0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGS8B60K

IRGS8B60K

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGS8B60K - INSULATED GATE BIPOLAR TRANSISTOR - International Rectifier

  • 详情介绍
  • 数据手册
  • 价格&库存
IRGS8B60K 数据手册
PD - 94545C INSULATED GATE BIPOLAR TRANSISTOR Features • • • • Low VCE (on) Non Punch Through IGBT Technology. 10µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. C IRGB8B60K IRGS8B60K IRGSL8B60K VCES = 600V IC = 20A, TC=100°C G E tsc>10µs, TJ=150°C Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. n-channel VCE(on) typ. = 1.8V TO-220AB IRGB8B60K D2Pak IRGS8B60K TO-262 IRGSL8B60K Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE PD @ TC = 25°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current Max. 600 28 19 Units V A c 56 56 ±20 167 83 -55 to +175 °C 300 (0.063 in. (1.6mm) from case) V W Gate-to-Emitter Voltage Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec. PD @ TC = 100°C Maximum Power Dissipation Thermal / Mechanical Characteristics Parameter RθJC RθCS RθJA RθJA Junction-to-Case- IGBT Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. ––– Typ. ––– 0.50 ––– ––– 1.44 Max. 0.90 ––– 62 40 ––– Units °C/W d ––– Junction-to-Ambient (PCB Mount, Steady State) e ––– ––– ––– g www.irf.com 1 10/16/03 IRGB/S/SL8B60K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units — 0.57 1.8 2.2 2.3 4.5 -9.5 3.7 1.0 200 800 — — — 2.2 2.5 2.6 5.5 — — 150 500 1320 ±100 nA µA V Conditions VGE = 0V, IC = 500µA Ref.Fig. V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — VCE(on) Collector-to-Emitter Voltage — — — VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Zero Gate Voltage Collector Current 3.5 — — — — — IGES Gate-to-Emitter Leakage Current — V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 8.0A, VGE = 15V, TJ = 25°C V IC = 8.0A, VGE = 15V, TJ = 150°C IC = 8.0A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 1mA (25°C-125°C) S VCE = 50V, IC = 8.0A, PW = 80µs VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C VGE = ±20V 5,6,7 8,9,10 8,9,10, 11 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Min. Typ. Max. Units — — — — — — — — — — — — — — — — — — — — 29 3.7 14 160 160 320 23 22 140 32 220 270 490 22 21 180 40 440 38 16 — — — 268 268 433 27 26 150 42 330 381 608 27 25 198 56 — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 8.0A VCC = 480V VGE = 15V Conditions Ref.Fig. 17 CT1 IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 25°C CT4 f IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 25°C IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 150°C CT4 12,14 WF1,WF2 13,15 CT4 WF1 WF2 CT4 f IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 150°C 16 FULL SQUARE f = 1.0MHz TJ = 150°C, IC = 34A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 50Ω TJ = 150°C, Vp = 600V, RG = 100Ω 4 CT2 CT3 WF3 SCSOA Short Circuit Safe Operating Area 10 — — µs VCC=360V,VGE = +15V to 0V Notes  to „ are on page 13. 2 www.irf.com IRGB/S/SL8B60K 35 30 25 175 150 125 Ptot (W) 0 20 40 60 80 100 120 140 160 180 T C (°C) IC (A) 20 15 10 5 0 100 75 50 25 0 0 20 40 60 80 100 120 140 160 180 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 100 µs 10 IC (A) 1ms 1 10ms 0.1 DC IC A) 1 0 1 10 100 VCE (V) 1000 10000 10 100 VCE (V) 1000 0.01 Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V www.irf.com 3 IRGB/S/SL8B60K 40 35 30 25 ICE (A) 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 35 30 25 20 15 10 5 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6 0 1 2 3 VCE (V) 4 5 6 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 40 35 30 25 ICE (A) 20 15 10 5 0 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 1 2 3 VCE (V) 4 5 6 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 4 www.irf.com IRGB/S/SL8B60K 20 18 16 14 20 18 16 14 VCE (V) 10 8 6 4 2 0 5 10 ICE = 4.0A ICE = 8.0A ICE = 16A VCE (V) 12 12 10 8 6 4 2 0 ICE = 4.0A ICE = 8.0A ICE = 16A 15 VGE (V) 20 5 10 VGE (V) 15 20 Fig. 8 - Typical VCE vs. VGE TJ = -40°C Fig. 9 - Typical VCE vs. VGE TJ = 25°C 20 18 16 14 100 80 T J = 25°C T J = 150°C VCE (V) 10 8 6 4 2 0 5 10 ICE = 4.0A ICE = 8.0A ICE = 16A ICE (A) 12 60 40 T J = 150°C TJ = 25°C 0 20 15 VGE (V) 20 0 5 10 VGE (V) 15 20 Fig. 10 - Typical VCE vs. VGE TJ = 150°C Fig. 11 - Typ. Transfer Characteristics VCE = 360V; tp = 10µs www.irf.com 5 IRGB/S/SL8B60K 600 500 400 Energy (µJ) Swiching Time (ns) tdOFF 1000 300 200 EOFF 100 tF tdON tR EON 100 0 0 5 10 IC (A) 15 20 10 0 5 10 15 20 IC (A) Fig. 12 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.1mH; VCE= 400V, RG= 50Ω; VGE= 15V Fig. 13 - Typ. Switching Time vs. IC TJ = 150°C; L=1.1mH; VCE= 400V RG= 50Ω; VGE= 15V 700 600 500 10000 EON EOFF Swiching Time (ns) 1000 Energy (µJ) 400 300 200 100 0 0 100 200 300 400 500 tdOFF 100 tdON tF tR 10 0 100 200 300 400 500 RG ( Ω) RG ( Ω) Fig. 14 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V Fig. 15 - Typ. Switching Time vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V 6 www.irf.com IRGB/S/SL8B60K 1000 Cies 16 14 300V Coes 12 10 400V Capacitance (pF) 100 VGE (V) Cres 8 6 4 2 10 1 1 10 100 0 0 5 10 15 20 25 30 VCE (V) Q G , Total Gate Charge (nC) Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 17 - Typical Gate Charge vs. VGE ICE = 8.0A; L = 600µH 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 τJ R1 R1 τJ τ1 τ2 R2 R2 τC τ1 τ2 τ 0.10 0.05 0.02 0.01 Ri (°C/W) 0.491 0.409 τi (sec) 0.000190 0.001153 Ci= τi/Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) www.irf.com 7 IRGB/S/SL8B60K L L 0 DUT 1K VCC 80 V + - DUT Rg 480V Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit Driver DC diode clamp / DUT L 360V - 5V DUT / DRIVER Rg DUT VCC Fig.C.T.3 - S.C.SOA Circuit R= Fig.C.T.4 - Switching Loss Circuit VCC ICM DUT Rg VCC Fig.C.T.5 - Resistive Load Circuit 8 www.irf.com IRGB/S/SL8B60K 600 500 400 90% Ice 300 Vce (V) 5% Vce 200 5% Ice 100 0 Eoff Loss -100 -200 0 0.2 0.4 0.6 0.8 1 Time (uS) -2 -4 Ice 2 0 100 5% Vce 4 12 tf Vce 10 8 6 Ice (A) Vce (V) 600 24 500 tr Vce Ice 90% Ice 20 400 16 300 10% Ice 12 Ice (A) 4 200 8 0 Eon Loss 0.3 0.5 0.7 Time (uS) 0.9 0 -100 -4 Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 400 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 80 350 300 60 250 Vce (V) Ice (A) 200 40 150 100 20 50 0 0.00 10.00 20.00 30.00 40.00 0 50.00 Time (uS) Fig. WF3- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 www.irf.com 9 IRGB/S/SL8B60K TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) HEXFET 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS IGBTs, CoPACK LEAD 1- GATE 1- GATE ASSIGNMENTS 1 22- DRAIN - GATE COLLECTOR 2 - DRAIN 3 - SOURCE 4 - DRAIN 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 L OT CODE 1789 AS SEMBLED ON WW 19, 1997 IN T HE ASSEMBLY LINE "C" INT ERNAT IONAL RECT IFIER LOGO AS SEMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C 10 www.irf.com IRGB/S/SL8B60K D2Pak Package Outline D2Pak Part Marking Information THIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN THE ASS EMBLY LINE "L" INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DATE CODE YEAR 0 = 2000 WEEK 02 LINE L www.irf.com 11 IRGB/S/SL8B60K TO-262 Package Outline IGBT 1- GATE 2- COLLECTOR 3- EMITTER TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C 12 www.irf.com IRGB/S/SL8B60K D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes:  VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω. ‚ This is only applied to TO-220AB package. ƒ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. „ Energy losses include "tail" and diode reverse recovery, using Diode HF03D060ACE. TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/03 www.irf.com 13
IRGS8B60K
1. 物料型号: - IRGB8B60K - IRGS8B60K - IRGSL8B60KPD

2. 器件简介: - 该文档描述了一种绝缘栅双极晶体管(IGBT),具有600V的集电极-发射极电压(VCES),在100°C时集电极电流为20A。 - 特点包括低VCE(导通)非穿透IGBT技术、10微秒短路能力、正方形RBSOA(反向偏置安全工作区)和正的VCE(导通)温度系数。

3. 引脚分配: - TO-220AB和D2Pak封装的IRGB8B60K、IRGS8B60K: - 1. 栅极(GATE) - 2. 漏极(DRAIN) - 3. 源极(SOURCE) - TO-262封装的IRGSL8B60K: - 1. 栅极(GATE) - 2. 集电极(COLLECTOR) - 3. 发射极(EMITTER)

4. 参数特性: - 绝对最大额定值包括600V的VCES和28A的25°C连续集电极电流。 - 热/机械特性包括结到外壳的最大热阻RaJC为0.90°C/W。

5. 功能详解: - 电气特性表提供了在25°C下的工作电压、阈值电压、跨导等参数。 - 开关特性表提供了开关过程中的总门电荷、开关损耗和延迟时间等参数。

6. 应用信息: - 该IGBT适用于电机控制应用,具有基准效率、坚固的瞬态性能和低电磁干扰。 - 并联操作时电流共享优秀。

7. 封装信息: - 提供了TO-220AB、D2Pak和TO-262封装的尺寸和标记信息。
IRGS8B60K 价格&库存

很抱歉,暂时无法提供与“IRGS8B60K”相匹配的价格&库存,您可以联系我们找货

免费人工找货