0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGSL10B60KD

IRGSL10B60KD

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGSL10B60KD - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - International ...

  • 数据手册
  • 价格&库存
IRGSL10B60KD 数据手册
PD - 94382D INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C IRGB10B60KD IRGS10B60KD IRGSL10B60KD VCES = 600V IC = 12A, TC=100°C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. G E tsc > 10µs, TJ=150°C Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. n-channel VCE(on) typ. = 1.8V TO-220AB IRGB10B60KD D2Pak IRGS10B60KD Max. 600 22 12 44 44 22 10 44 ± 20 156 62 -55 to +150 TO-262 IRGSL10B60KD Units V Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current „ Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. A V W °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA RθJA Wt Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state)‚ Weight Min. ––– ––– ––– ––– ––– ––– Typ. ––– ––– 0.50 ––– ––– 1.44 Max. 0.8 3.4 ––– 62 40 ––– Units °C/W g www.irf.com 1 8/18/04 IRG/B/S/SL10B60KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ––– Temperature Coeff. of Breakdown Voltage ––– 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 ––– 2.20 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage ––– -10 Forward Transconductance ––– 7.0 Zero Gate Voltage Collector Current ––– 3.0 ––– 300 Diode Forward Voltage Drop ––– 1.30 ––– 1.30 Gate-to-Emitter Leakage Current ––– ––– Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 IC = 10A, VGE = 15V 2.50 V IC = 10A, VGE = 15V TJ = 150°C 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 10A, PW=80µs 150 µA VGE = 0V, VCE = 600V 700 VGE = 0V, VCE = 600V, TJ = 150°C 1.45 IC = 10A 1.45 V IC = 10A TJ = 150°C ±100 nA VGE = ±20V Ref.Fig. 5, 6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operting Area Short Circuit Safe Operting Area Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Ref.Fig. Max. Units Conditions ––– IC = 10A ––– nC VCC = 400V CT1 ––– VGE = 15V CT4 247 µJ IC = 10A, VCC = 400V 360 VGE = 15V,RG = 47Ω, L = 200µH 607 Ls = 150nH TJ = 25°C ƒ 39 IC = 10A, VCC = 400V 29 VGE = 15V, RG = 47Ω, L = 200µH CT4 262 ns Ls = 150nH, TJ = 25°C 32 CT4 340 IC = 10A, VCC = 400V 13,15 464 µJ VGE = 15V,RG = 47Ω, L = 200µH WF1WF2 804 Ls = 150nH TJ = 150°C ƒ 14, 16 39 IC = 10A, VCC = 400V CT4 28 VGE = 15V, RG = 47Ω, L = 200µH 274 ns Ls = 150nH, TJ = 150°C WF1 34 WF2 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 44A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 47Ω CT2 CT3 µs TJ = 150°C, Vp =600V,RG = 47Ω 10 ––– ––– WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 ––– 245 330 µJ TJ = 150°C 20, 21 ––– 90 105 ns VCC = 400V, IF = 10A, L = 200µH CT4,WF3 ––– 19 22 A VGE = 15V,RG = 47Ω, Ls = 150nH Typ. 38 4.3 16.3 140 250 390 30 20 230 23 230 350 580 30 20 250 26 620 62 22 Note  to „ are on page 15 2 www.irf.com IRG/B/S/SL10B60KD 25 180 160 20 140 120 Ptot (W) 15 IC (A) 100 80 60 10 5 40 20 0 0 20 40 60 80 100 120 140 160 T C (°C) 0 0 20 40 60 80 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 IC (A) 10 µs 10 1 DC 100 µs 1ms IC A) 1 20 µs 0.1 1 10 100 VCE (V) 1000 10000 0 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V www.irf.com 3 IRG/B/S/SL10B60KD 40 35 30 25 ICE (A) 40 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V ICE (A) 35 30 25 20 15 10 5 0 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V 20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6 0 1 2 3 VCE (V) 4 5 6 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 40 35 30 25 ICE (A) 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V IF (A) 35 30 25 20 15 10 5 0 -40°C 25°C 150°C 20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6 0.0 0.5 1.0 1.5 VF (V) 2.0 2.5 3.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 4 www.irf.com IRG/B/S/SL10B60KD 20 18 16 14 VCE (V) VCE (V) 20 18 16 14 ICE = 5.0A ICE = 10A ICE = 15A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 5.0A ICE = 10A ICE = 15A 12 10 8 6 4 2 0 Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 18 16 80 70 60 T J = 25°C T J = 150°C 14 VCE (V) ICE (A) 12 10 8 6 ICE = 5.0A ICE = 10A ICE = 15A 50 40 30 20 T J = 150°C T J = 25°C 0 5 10 VGE (V) 15 20 4 2 0 5 10 VGE (V) 15 20 10 0 Fig. 11 - Typical VCE vs. VGE TJ = 150°C Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com 5 IRG/B/S/SL10B60KD 800 700 600 Energy (µJ) 1000 tdOFF EOFF 500 400 300 200 100 0 0 5 Swiching Time (ns) 100 EON tdON tF 10 0 tR 5 10 15 20 25 10 IC (A) 15 20 25 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 47Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 47Ω; VGE= 15V 500 450 400 1000 EOFF tdOFF 300 250 200 150 100 50 0 0 50 EON Swiching Time (ns) 350 Energy (µJ) 100 tdON tR tF 10 100 150 0 50 100 150 R G ( Ω) RG ( Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 10A; VGE= 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 10A; VGE= 15V 6 www.irf.com IRG/B/S/SL10B60KD 25 R G = 10 Ω RG = 22 Ω RG = 47 Ω 25 20 20 IRR (A) 10 RG = 100 Ω IRR (A) 15 15 10 5 5 0 0 5 10 15 20 25 0 0 50 100 150 IF (A) RG ( Ω) Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 10A 25 1200 10 Ω 1100 22Ω 47Ω 100 Ω 800 700 600 20A 10A 20 1000 Q RR (µC) IRR (A) 15 900 10 5 500 400 0 500 1000 1500 5.0A 0 0 500 1000 1500 diF /dt (A/µs) diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 10A; TJ = 150°C Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C www.irf.com 7 IRG/B/S/SL10B60KD 450 400 350 300 10Ω 22 Ω Energy (µJ) 250 200 150 100 50 0 0 5 10 15 20 47 Ω 100 Ω 25 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 1000 16 Cies 14 300V 12 400V Capacitance (pF) 10 VGE (V) 100 Coes 8 6 Cres 4 2 0 10 1 10 100 0 10 20 30 40 VCE (V) Q G , Total Gate Charge (nC) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 23 - Typical Gate Charge vs. VGE ICE = 10A; L = 600µH 8 www.irf.com IRG/B/S/SL10B60KD 1 D = 0.50 Thermal Response ( Z thJC ) 0.20 0.1 0.10 0.05 0.01 0.02 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 Ri (°C/W) 0.285 0.241 0.288 τi (sec) 0.000134 0.000565 0.0083 τ1 τ2 0.01 Ci= τi /Ri Ci= i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.01 0.02 R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 0.1 τJ Ri (°C/W) τi (sec) 0.846 0.000149 1.830 1.143 0.001575 0.027005 τ1 τ2 Ci= τi /Ri Ci= i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-3 1E-2 1E-1 1E+0 0.001 1E-6 1E-5 1E-4 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRG/B/S/SL10B60KD L L DUT 0 VCC 80 V + - DUT 480V 1K Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT Driver DC L 360V - 5V DUT / DRIVER Rg VCC DUT Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= VCC ICM DUT Rg VCC Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRG/B/S/SL10B60KD 600 500 400 300 tf 200 5% V CE 12 10 8 6 4 2 0 Eoff Loss 600 500 400 TEST CURRENT 30 25 20 15 90% test current 10% test current 90% ICE V CE (V) VCE (V) ICE (A) 200 100 0 tr 10 5 0 100 0 -100 -0.20 5% ICE 5% V CE Eon Loss 0.00 0.20 0.40 0.60 -2 0.80 -100 15.90 16.00 16.10 -5 16.20 time(µs) time (µs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 100 QR R 0 tR R -100 -200 -300 -400 -500 -600 -0.15 Peak IRR 10% Peak IRR Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 400 V CE 350 300 250 V CE (V) ICE ICE (A) 100 15 10 5 0 IF (A) -5 -10 -15 -20 0.25 VF (V) 200 150 100 50 0 -5.00 50 -0.05 0.05 time (µS) 0.15 0.00 5.00 time (µS) 10.00 0 15.00 Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF4- Typ. S.C Waveform @ TJ = 150°C using Fig. CT.3 www.irf.com 11 I CE (A) 300 IRG/B/S/SL10B60KD TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS HEXFET GATE 11234LEAD ASSIGNMENTS IGBTs, CoPACK GATE COLLECTOR EMITTER COLLECTOR 14.09 (.555) 13.47 (.530) 2GATE DRAIN 3DRAINSOURCE SOURCE 4 - DRAIN DRAIN 1234- 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.92 (.115) 2.64 (.104) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R Note: "P" in assembly line position indicates "Lead-Free" DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C 12 www.irf.com IRG/B/S/SL10B60KD D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information T HIS IS AN IRF 530S WITH L OT CODE 8024 AS S E MBLE D ON WW 02, 2000 IN THE AS S E MB LY L INE "L " Note: "P" in as s embly line pos ition indicates "Lead-F ree" INTE RNAT IONAL RE CT IFIE R LOGO AS S E MBL Y L OT CODE PAR T NU MBE R F 530S DAT E CODE YEAR 0 = 2000 WE EK 02 L INE L OR INT ERNAT IONAL RECT IF IER L OGO AS S EMB LY LOT CODE PART NUMB ER F 530S DAT E CODE P = DES IGNAT ES LEAD-F REE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS S EMB LY S IT E CODE www.irf.com 13 IRG/B/S/SL10B60KD TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information E XAMPLE : T HIS IS AN IRL3103L LOT CODE 1789 AS S E MB LE D ON WW 19, 1997 IN T HE AS S E MB LY LINE "C" Note: "P" in as sembly line pos ition indicates "Lead-F ree" INT E RNAT IONAL RECT IFIER LOGO AS S E MB LY LOT CODE PART NUMBER DATE CODE YE AR 7 = 1997 WEE K 19 LINE C OR INT E RNAT IONAL RECT IFIER LOGO PART NUMBER DATE CODE P = DE S IGNAT ES LEAD-F REE PRODUCT (OPTIONAL) YE AR 7 = 1997 WEE K 19 A = AS S E MB LY S IT E CODE AS S E MB LY LOT CODE 14 www.irf.com IRG/B/S/SL10B60KD D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes:  This is only applied to TO-220AB package ‚ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. ƒ Energy losses include "tail" and diode reverse recovery. „ VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 47Ω. TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04 www.irf.com 15
IRGSL10B60KD 价格&库存

很抱歉,暂时无法提供与“IRGSL10B60KD”相匹配的价格&库存,您可以联系我们找货

免费人工找货