PD - 94799
INSULATED GATE BIPOLAR TRANSISTOR
C
IRGB30B60K IRGS30B60K IRGSL30B60K
VCES = 600V IC = 50A, TC=100°C at TJ=175°C
Features
• • • • • Low VCE (on) Non Punch Through IGBT Technology. 10µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. Maximum Junction Temperature rated at 175°C.
G E
tsc > 10µs, TJ=150°C
n-channel
VCE(on) typ. = 1.95V
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation.
TO-220AB IRGB30B60K
D2 Pak IRGS30B60K
TO-262 IRGSL30B60K
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VISOL VGE PD @ TC = 25°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current
Max.
600 78 50 120 120 2500 ±20 370 180 -55 to +175
Units
V A
g
RMS Isolation Voltage, Terminal to Case, t=1 min. Gate-to-Emitter Voltage Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw
V W
PD @ TC = 100°C Maximum Power Dissipation
°C 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m)
Thermal / Mechanical Characteristics
Parameter
RθJC RθCS RθJA RθJA Wt Junction-to-Case- IGBT Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
–––
Typ.
––– 0.50 ––– ––– 1.44
Max.
0.41 ––– 62 40 –––
Units
°C/W
d
–––
Junction-to-Ambient (PCB Mount, Steady State)
eÃÃ
––– ––– –––
g
www.irf.com
1
10/8/03
IRGB/S/SL30B60K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES IGES
Min. Typ. Max. Units
— 0.40 1.95 2.40 2.6 4.5 -10 18 5.0 1000 1830 —
Conditions
Ref.Fig.
Collector-to-Emitter Breakdown Voltage 600 Temperature Coeff. of Breakdown Voltage — — Collector-to-Emitter Voltage — — Gate Threshold Voltage 3.5 Threshold Voltage temp. coefficient — Forward Transconductance — — Zero Gate Voltage Collector Current — — Gate-to-Emitter Leakage Current —
— V VGE = 0V, IC = 500µA — V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 30A, VGE = 15V, TJ = 25°C 2.35 2.75 V IC = 30A, VGE = 15V, TJ = 150°C IC = 30A, VGE = 15V, TJ = 175°C 2.95 5.5 V VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 1.0mA (25°C-150°C) — S VCE = 50V, IC = 50A, PW = 80µs VGE = 0V, VCE = 600V 250 2000 µA VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C 3000 ±100 nA VGE = ±20V, VCE = 0V
5,6,7 8,9,10
8,9,10 11
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (Peak) Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current
Min. Typ. Max. Units
— 102 153 — 14 21 — 44 66 — 350 620 — 825 955 — 1175 1575 — 46 60 — 28 39 — 185 200 — 31 40 — 635 1085 — 1150 1350 — 1785 2435 — 46 60 — 28 39 — 205 235 — 32 42 — 7.5 — — 1750 2500 — 160 255 — 60 90 FULL SQUARE 10 — — 200 — — nC
Conditions
IC = 30A VCC = 400V VGE = 15V IC = 30A, VCC = 400V VGE = 15V, RG = 10Ω, L = 200µH TJ = 25°C IC = 30A, VCC = 400V VGE = 15V, RG = 10Ω, L = 200µH TJ = 25°C
Ref.Fig.
17 CT1
CT4
µJ
f
ns
CT4
µJ
ns
IC = 30A, VCC = 400V VGE = 15V, RG = 10Ω, L = 200µH TJ = 150°C IC = 30A, VCC = 400V VGE = 15V, RG = 10Ω, L = 200µH TJ = 150°C
CT4 12,14 WF1,WF2 13,15 CT4 WF1 WF2
f
nH pF
µs A
Measured 5mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150°C, IC = 120A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG =10Ω TJ = 150°C, Vp = 600V, RG = 10Ω VCC=360V,VGE = +15V to 0V
16
4 CT2 CT3 WF3 WF3
Note to
are on page 13
2
www.irf.com
IRGB/S/SL30B60K
80 70 60 50 40 30 20 10 0 0 20 40 60 80 100 120 140 160 180 T C (°C)
Ptot (W) IC (A)
400 350 300 250 200 150 100 50 0 0 20 40 60 80 100 120 140 160 180 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
1000
1000
100 10 µs
100
IC (A)
10 100 µs 1 1ms DC 0.1 1 10 100 VCE (V) 1000 10000
IC A)
10 1 10 100 VCE (V) 1000
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRGB/S/SL30B60K
60 50 40
ICE (A)
60
VGE = 18V VGE = 15V VGE = 12V VGE = 10V
ICE (A)
50 40 30 20 10 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
VGE = 8.0V 30 20 10 0 0 1 2 3 VCE (V) 4 5
0
1
2
3 VCE (V)
4
5
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
60 50 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 30 20 10 0 0 1 2 3 VCE (V) 4 5
ICE (A)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
4
www.irf.com
IRGB/S/SL30B60K
20 18 16 14
VCE (V)
VCE (V)
20 18 16 14
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 15A ICE = 30A ICE = 60A
12 10 8 6 4 2 0
ICE = 15A ICE = 30A ICE = 60A
15
20
5
10 VGE (V)
15
20
Fig. 8 - Typical VCE vs. VGE TJ = -40°C
Fig. 9 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
VCE (V)
250 T J = 25°C 200 T J = 150°C
10 8 6 4 2 0 5 10 VGE (V)
ICE = 60A
ICE (A)
12
ICE = 15A ICE = 30A
150
100 T J = 150°C T J = 25°C 0
50
15
20
0
5
10 VGE (V)
15
20
Fig. 10 - Typical VCE vs. VGE TJ = 150°C
Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
www.irf.com
5
IRGB/S/SL30B60K
3000 2500 2000
Energy (µJ)
1000
EOFF 1500 1000 500 0 0 20 40 IC (A) 60 80 EON
Swiching Time (ns)
tdOFF
100
td ON tF tR
10 0 20 40 60 80
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC TJ = 150°C; L=200µH; VCE= 400V, RG= 10Ω; VGE= 15V
Fig. 13 - Typ. Switching Time vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 10Ω; VGE= 15V
3000
10000
2500
Swiching Time (ns)
2000
Energy (µJ)
EOFF EON
1000
tdOFF
1500
1000
100
tdON tR
tF
500
0 0 25 50 75 100 125
10 0 25 50 75 100 125
RG ( Ω)
RG (Ω)
Fig. 14 - Typ. Energy Loss vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 30A; VGE= 15V
Fig. 15 - Typ. Switching Time vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 30A; VGE= 15V
6
www.irf.com
IRGB/S/SL30B60K
10000
16 14 200V 12 10
VGE (V)
Cies
Capacitance (pF)
1000
400V
8 6 4
Coes
100
Cres
10 0 20 40 60 80 100
2 0 0 25 50 75 100 125 Q G, Total Gate Charge (nC)
VCE (V)
Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 17 - Typical Gate Charge vs. VGE ICE = 30A; L = 600µH
10
Thermal Response ( Z thJC )
1
0.1
D = 0.50 0.20 0.10 0.05 0.02 0.01
τJ τJ τ1 τ1
R1 R1 τ2
R2 R2 τC τ2 τ
0.01
Ri (°C/W) τi (sec) 0.200 0.000428 0.209 0.013031
Ci= τi/Ri Ci i/Ri
0.001
SINGLE PULSE ( THERMAL RESPONSE )
0.0001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
7
IRGB/S/SL30B60K
L
L
0
DUT 1K
VCC
80 V
+ -
DUT Rg
480V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
Driver
DC
diode clamp / DUT
L
360V
- 5V DUT / DRIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C.SOA Circuit
VCC ICM
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
8
www.irf.com
IRGB/S/SL30B60K
700 600
90% ICE
35 30 tf 25 20
700 600 500
TEST CURRENT
70 60 50 40 30
90% test current tr 10% test current 5% V CE
500 400 V CE (V) 300 200 100 0
400 VCE (V) 300 200 100 0 -100 15.90
15
5% V CE 5% ICE
ICE (A)
10 5 0
20 10 0
Eoff Loss
Eon Loss
-100 -0.20
0.00
0.20
0.40
0.60
-5 0.80
16.00
16.10 Time (µs)
16.20
-10 16.30
Time(µs)
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
600
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
300
500 ICE VCE
250
400 VCE (V)
200 ICE (A)
300
150
200
100
100
50
0 -5.00
0.00
5.00 time (µS)
10.00
0 15.00
Fig. WF3- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3
www.irf.com
ICE (A)
9
IRGB/S/SL30B60K
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103)
10.54 (.415) 10.29 (.405)
3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240)
-B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
LEAD ASSIGNMENTS HEXFET IGBTs, CoPACK
1.15 (.045) MIN 1 2 3
LEAD 1- GATE 1- GATE ASSIGNMENTS 1 22- DRAIN - GATE COLLECTOR 33- SOURCEDRAIN EMITTER 24- COLLECTOR 4- DRAIN - SOURCE 3 4 - DRAIN
14.09 (.555) 13.47 (.530)
4.06 (.160) 3.55 (.140)
3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 2X NOTES:
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.92 (.115) 2.64 (.104)
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010 L OT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE AS S EMBLY LINE "C" INTERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
10
www.irf.com
IRGB/S/SL30B60K
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
THIS IS AN IRF530S WITH LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS SEMBLY LINE "L" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L
www.irf.com
11
IRGB/S/SL30B60K
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
IGBT 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
12
www.irf.com
IRGB/S/SL30B60K
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059)
0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Notes: VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω. This is only applied to TO-220AB package. This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Energy losses include "tail" and diode reverse recovery.
Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/03
www.irf.com
13