0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGSL4B60KD1

IRGSL4B60KD1

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRGSL4B60KD1 - INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE - International ...

  • 详情介绍
  • 数据手册
  • 价格&库存
IRGSL4B60KD1 数据手册
PD - 94607A INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • Low VCE (on) Non Punch Through IGBT Technology. 10µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. Maximum Junction Temperature rated at 175°C. IRGB4B60KD1 IRGS4B60KD1 IRGSL4B60KD1 C VCES = 600V IC = 7.6A, TC=100°C G E tsc > 10µs, TJ=150°C n-channel Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. VCE(on) typ. = 2.1V D2Pak TO-220 IRGB4B60KD1 IRGS4B60KD1 TO-262 IRGSL4B60KD1 Units V A Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current Max. 600 11 7.6 22 22 11 6.7 22 ±20 63 31 -55 to +175 c Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Operating Junction and Storage Temperature Range Storage Temperature Range, for 10 sec. V W PD @ TC = 100°C Maximum Power Dissipation °C 300 (0.063 in. (1.6mm) from case) Thermal / Mechanical Characteristics Parameter RθJC RθJC RθCS RθJA RθJA Wt Junction-to-Case- IGBT Junction-to-Case- Diode Case-to-Sink, flat, greased surface Junction-to-Ambient Weight Junction-to-Ambient (PCB Mount, steady state) Min. ––– ––– ––– ––– ––– ––– Typ. ––– ––– 0.50 ––– ––– 1.44 Max. 2.4 6.1 ––– 62 40 ––– Units °C/W d g www.irf.com 1 05/28/03 IRGB/S/SL4B60KD1 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units — 0.28 2.1 2.5 2.6 4.5 -8.1 1.7 1.0 136 722 1.4 1.3 1.2 — — — 2.5 2.8 2.9 5.5 — — 150 600 2400 2.0 1.8 1.7 ±100 nA V µA V V Conditions VGE = 0V, IC = 500µA Ref.Fig. V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — — VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM Collector-to-Emitter Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Zero Gate Voltage Collector Current Diode Forward Voltage Drop — — 3.5 — — — — — — — — IGES Gate-to-Emitter Leakage Current — V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 4.0A, VGE = 15V, TJ = 25°C V IC = 4.0A, VGE = 15V, TJ = 150°C IC = 4.0A, VGE = 15V, TJ = 175°C VCE = VGE, IC = 250µA 5,6,7 9,10,11 9,10,11 12 mV/°C VCE = VGE, IC = 1mA (25°C-150°C) S VCE = 50V, IC = 4.0A, PW = 80µs VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C IF = 4.0A IF = 4.0A, TJ = 150°C IF = 4.0A, TJ = 175°C VGE = ±20V 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Min. Typ. Max. Units — — — — — — — — — — — — — — — — — — — — 12 1.7 6.5 73 47 120 22 18 100 66 130 83 220 22 18 120 79 190 25 6.2 — — — 80 53 130 28 23 110 80 150 140 280 27 22 130 89 — — — pF VGE = 0V VCC = 30V ns µJ ns µJ nC IC = 4.0A VCC = 400V VGE = 15V Conditions Ref.Fig. 23 CT1 IC = 4.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 2.5mH TJ = 25°C CT4 e IC = 4.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 2.5mH TJ = 25°C IC = 4.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 2.5mH TJ = 150°C CT4 13,15 WF1,WF2 14,16 CT4 WF1 WF2 CT4 e IC = 4.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 2.5mH TJ = 150°C 22 FULL SQUARE 10 — — — — 81 93 6.3 — 100 — 7.9 µs µJ ns A f = 1.0MHz TJ = 150°C, IC = 22A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 100Ω TJ = 150°C, Vp = 600V, RG = 100Ω VCC=360V,VGE = +15V to 0V TJ = 150°C VCC = 400V, IF = 4.0A, L = 2.5mH VGE = 15V, RG = 100Ω 4 CT2 CT3 WF4 17,18,19 20,21 CT4,WF3 Note  to ƒ are on page 16 2 www.irf.com IRGB/S/SL4B60KD1 12 10 8 6 4 70 60 50 Ptot (W) IC (A) 40 30 20 2 0 0 20 40 60 80 100 120 140 160 180 T C (°C) 10 0 0 20 40 60 80 100 120 140 160 180 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 100µs 10 IC A) IC (A) 1 1ms 0.1 10ms 1 DC 0.01 0 1 10 100 1000 10000 VCE (V) 0 10 100 VCE (V) 1000 Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V www.irf.com 3 IRGB/S/SL4B60KD1 30 25 20 ICE (A) VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 30 25 20 15 10 5 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 15 10 5 0 0 2 4 6 VCE (V) 8 10 12 0 2 4 6 VCE (V) 8 10 12 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 35 30 25 IF (A) 20 ICE (A) 15 20 15 10 -40°C 25°C 150°C 10 5 5 0 0 2 4 6 VCE (V) 8 10 12 0 0.0 0.5 1.0 1.5 VF (V) 2.0 2.5 3.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 4 www.irf.com IRGB/S/SL4B60KD1 20 18 16 14 VCE (V) VCE (V) 20 18 16 14 ICE = 2.0A ICE = 4.0A ICE = 8.0A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 2.0A ICE = 4.0A ICE = 8.0A 12 10 8 6 4 2 0 Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 18 ID, Drain-to-Source Current (Α) 30 16 14 VCE (V) 25 T J = 25°C 20 12 10 8 6 4 2 0 5 10 VGE (V) ICE = 2.0A ICE = 4.0A ICE = 8.0A 15 TJ = 150°C 10 5 0 15 20 0 5 10 15 20 VGS , Gate-to-Source Voltage (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C Fig. 12 - Typ. Transfer Characteristics VCE = 360V; tp = 10µs www.irf.com 5 IRGB/S/SL4B60KD1 350 300 Swiching Time (ns) 1000 250 Energy (µJ) EON 100 td OFF tF tdON 10 200 150 100 50 0 1 2 3 4 5 6 7 8 9 10 IC (A) EOFF tR 1 0 2 4 6 8 10 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=2.5mH; VCE= 400V, RG= 100Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=2.5mH; VCE= 400V RG= 100Ω; VGE= 15V 350 300 250 1000 EON 200 150 100 50 0 0 100 200 300 400 500 Swiching Time (ns) Energy (µJ) tdOFF 100 EOFF tF tdON tR 10 0 100 200 300 400 500 RG ( Ω) RG ( Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=2.5mH; VCE= 400V ICE= 4.0A; VGE= 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=2.5mH; VCE= 400V ICE= 4.0A; VGE= 15V 6 www.irf.com IRGB/S/SL4B60KD1 10 9 8 7 7 RG = 100Ω 6 IRR (A) 6 5 4 3 2 1 0 1 2 3 4 5 6 RG = 330Ω RG = 470Ω IRR (A) RG = 200Ω 5 4 3 2 7 8 9 10 0 100 200 300 400 500 IF (A) RG (Ω) Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 4.0A 7 700 600 200Ω 500 330Ω 470Ω 400 4.0A 300 Q RR (µC) 6 100Ω 8.0A IRR (A) 5 4 3 2.0A 200 100 100 150 200 250 300 2 0 50 100 150 200 250 300 350 400 diF /dt (A/µs) diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; IF = 4.0A; TJ = 150°C Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C www.irf.com 7 IRGB/S/SL4B60KD1 150 125 100Ω 200Ω 330Ω 470 Ω 100 Energy (µJ) 75 50 25 0 0 1 2 3 4 5 6 7 8 9 10 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 1000 16 Cies 14 300V 12 400V 10 Capacitance (pF) 100 Coes VGE (V) 40 60 80 100 8 6 4 2 10 Cres 1 0 20 0 0 2 4 6 8 10 12 14 VCE (V) Q G , Total Gate Charge (nC) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 23 - Typical Gate Charge vs. VGE ICE = 4.0A; L = 3150µH 8 www.irf.com IRGB/S/SL4B60KD1 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 0.1 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τi (sec) 0.0429 0.000001 1.3417 1.0154 0.000178 0.000627 τ1 τ2 Ci= τi /Ri Ci i/Ri 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 D = 0.50 Thermal Response ( Z thJC ) 1 0.20 0.10 0.05 0.02 τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4 0.1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ci= τi/Ri Ci i/Ri Ri (°C/W) 0.0904 1.6662 3.5994 0.7454 τi (sec) 0.000003 0.000117 0.001610 0.048846 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGB/S/SL4B60KD1 L L DUT 0 VCC 80 V + - DUT 480V 1K Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT Driver DC L 360V - 5V DUT / DRIVER Rg VCC DUT Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= VCC ICM DUT Rg VCC Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGB/S/SL4B60KD1 700 tf 600 Vce 500 90% Ice 400 5% Vce Vce (V) Ice (A) Vce (V) 14 12 10 8 6 4 Ice 2 0 Eoff Loss -2 0.4 0.6 0.8 Time (uS) 1 1.2 700 tr 600 Vce 500 400 300 200 100 0 Eon Loss -100 0.35 Ice 90% Ice 10% Ice 5% Vce 14 12 10 8 6 4 2 0 -2 0.45 0.55 Time (uS) 0.65 Ice (A) I (A) ICE (A) 300 200 100 0 -100 5% Ice Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 100 QR R tR R 0 4 6 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 400 350 300 40 35 30 25 Vce -100 2 250 -200 Vf (V) 0 If (A) VCE (V) Ice 200 150 100 20 15 10 5 0 -5 30 40 50 Time (uS) 60 70 -300 Peak IR R -400 10% Peak IR R -2 -4 50 -500 -6 0 -50 -600 0.05 0.15 Time (uS) 0.25 -8 0.35 Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF4- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 www.irf.com 11 IRGB/S/SL4B60KD1 Dimensions are shown in millimeters (inches) TO-220AB Package Outline 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 3 1 - GATE LEAD ASSIGNMENTS 2 - DRAIN 1 - GATE 2 -COLLECTOR 3 EMITTER 3 - SOURCE 4 - DRAIN 4 - COLLECTOR 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 2X NOTES: 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.92 (.115) 2.64 (.104) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C 12 www.irf.com IRGB/S/SL4B60KD1 D2Pak Package Outline D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 ASS EMBLED ON WW 02, 2000 IN T HE ASS EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER F 530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L www.irf.com 13 IRGB/S/SL4B60KD1 TO-262 Package Outline IGBT 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C 14 www.irf.com IRGB/S/SL4B60KD1 D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes:  VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 100Ω. ‚ When mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. ƒ Energy losses include "tail" and diode reverse recovery, using Diode FD059H06A5. TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 05/03 www.irf.com 15
IRGSL4B60KD1
1. 物料型号:IRGB4B60KD1

2. 器件简介: - 该器件是一款绝缘栅双极晶体管(IGBT),具备超快速软恢复二极管。 - 特点包括600V的集电极-发射极电压(VCES)、7.6A的集电极电流(IC),以及在100°C时的工作能力。 - 拥有10微秒的短路能力、正的VCE(on)温度系数,最大结温额定为175°C。

3. 引脚分配: - TO-220封装:IRGB4B60KD1 - D2Pak封装:IRGS4B60KD1 - TO-262封装:IRGSL4B60KD1

4. 参数特性: - 绝对最大额定值包括600V的集电极-发射极电压(VCES)和在25°C时连续集电极电流11A。 - 热/机械特性包括结到外壳的最大热阻2.4°C/W(IGBT)和6.1°C/W(Diode)。

5. 功能详解: - 该IGBT技术具有低VCE(on)和非穿透特性,适用于电机控制,具有基准效率和坚固的瞬态性能。 - 低EMI和在并行操作中优秀的电流共享能力。

6. 应用信息: - 适用于电机控制应用,特别是在需要高效率和良好瞬态表现的场合。

7. 封装信息: - 提供了三种不同的封装选项:TO-220、D2Pak和TO-262,以适应不同的应用和空间要求。
IRGSL4B60KD1 价格&库存

很抱歉,暂时无法提供与“IRGSL4B60KD1”相匹配的价格&库存,您可以联系我们找货

免费人工找货