PD - 94575A
INSULATED GATE BIPOLAR TRANSISTOR
Features
• Low VCE (on) Non Punch Through IGBT Technology. • 10µs Short Circuit Capability. • Square RBSOA. • Positive VCE (on) Temperature Coefficient.
C
IRGB6B60K IRGS6B60K IRGSL6B60K
VCES = 600V IC = 7.0A, TC=100°C
G E
tsc > 10µs, TJ=150°C
Benefits
• Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation.
n-channel
VCE(on) typ. = 1.8V
TO-220AB IRGB6B60K
D2Pak IRGS6B60K
TO-262 IRGSL6B60K
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec.
Max.
600 13 7.0 26 26 ± 20 90 36 -55 to +150 300 (0.063 in. (1.6mm) from case)
Units
V A
V W
°C
Thermal Resistance
Parameter
RθJC RθCS RθJA RθJA Wt Junction-to-Case - IGBT Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state) Weight
Min.
––– ––– ––– ––– –––
Typ.
––– 0.50 ––– ––– 1.44
Max.
1.4 ––– 62 40 –––
Units
°C/W
g
www.irf.com
1
8/18/04
IRG/B/S/SL6B60K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on) VGE(th)
∆VGE(th)/∆TJ
gfe ICES IGES
Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 ––– Temperature Coeff. of Breakdown Voltage ––– 0.3 Collector-to-Emitter Saturation Voltage 1.5 1.80 ––– 2.20 Gate Threshold Voltage 3.5 4.5 Temperature Coeff. of Threshold Voltage ––– -10 Forward Transconductance ––– 3.0 Zero Gate Voltage Collector Current ––– 1.0 ––– 200 Gate-to-Emitter Leakage Current ––– –––
Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 V IC = 5.0A, VGE = 15V 2.50 IC = 5.0A,VGE = 15V, TJ = 150°C 5.5 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 5.0A, PW=80µs 150 µA VGE = 0V, VCE = 600V 500 VGE = 0V, VCE = 600V, TJ = 150°C ±100 nA VGE = ±20V
Ref.Fig.
5, 6,7 8,9,10 8,9,10 11
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operting Area Short Circuit Safe Operting Area Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– IC = 5.0A ––– nC VCC = 400V ––– VGE = 15V 210 µJ IC = 5.0A, VCC = 400V 245 VGE = 15V,R G = 100Ω, L =1.4mH 455 Ls = 150nH TJ = 25°C 34 IC = 5.0A, VCC = 400V 26 VGE = 15V, RG = 100Ω L =1.4mH 230 ns Ls = 150nH, TJ = 25°C 22 260 IC = 5.0A, VCC = 400V 300 µJ VGE = 15V,R G = 100Ω, L =1.4mH 560 Ls = 150nH TJ = 150°C 37 IC = 5.0A, VCC = 400V 26 VGE = 15V, RG = 100Ω L =1.4mH 255 ns Ls = 150nH, TJ = 150°C 27 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz TJ = 150°C, IC = 26A, Vp =600V FULL SQUARE VCC = 500V, VGE =+15V to 0V,RG = 100Ω µs TJ = 150°C, Vp =600V, RG = 100Ω 10 ––– ––– VCC = 360V, VGE = +15V to 0V Typ. 18.2 1.9 9.2 110 135 245 25 17 215 13.2 150 190 340 28 17 240 18 290 34 10
Ref.Fig.
17 CT1 CT4
CT4
CT4 12,14
WF1WF2
13, 15 CT4 WF1 WF2 16 4 CT2 CT3 WF3
Note to are on page 13
2
www.irf.com
IRG/B/S/SL6B60K
15 100 90 80 10
Ptot (W) IC (A)
70 60 50 40 30 20 10
5
0 0 20 40 60 80 100 120 140 160 T C (°C)
0 0 20 40 60 80 100 120 140 160 T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
100
100
10 10 µs
IC (A)
IC A)
10
1 100 µs DC 1ms 0.1 1 10 100 VCE (V) 1000 10000
1
0 10 100 1000
VCE (V)
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
www.irf.com
3
IRG/B/S/SL6B60K
20 18 16 14
ICE (A)
20 VGE VGE VGE VGE VGE = 18V = 15V = 12V = 10V = 8.0V
ICE (A)
18 16 14 12 10 8 6 4 2 0
12 10 8 6 4 2 0 0
VGE VGE VGE VGE VGE
= 18V = 15V = 12V = 10V = 8.0V
1
2
3 VCE (V)
4
5
6
0
1
2
3 VCE (V)
4
5
6
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
20 18 16 14
ICE (A)
12 10 8 6 4 2 0 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
1
2
3 VCE (V)
4
5
6
Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs
4
www.irf.com
IRG/B/S/SL6B60K
20 18 16 14
VCE (V) VCE (V)
20 18 16 14 ICE = 3.0A ICE = 5.0A ICE = 10A 12 10 8 6 4 2 0 5 10 VGE (V) 15 20 5 10 VGE (V) 15 20 ICE = 3.0A ICE = 5.0A ICE = 10A
12 10 8 6 4 2 0
Fig. 8 - Typical VCE vs. VGE TJ = -40°C
Fig. 9 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
VCE (V)
40 35 30
ICE = 3.0A ICE = 5.0A ICE = 10A
T J = 25°C T J = 150°C
10 8 6 4 2 0 5 10 VGE (V)
ICE (A)
12
25 20 15 10 5 T J = 150°C T J = 25°C 0 5 10 VGE (V) 15 20
15
20
0
Fig. 10 - Typical VCE vs. VGE TJ = 150°C
Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
www.irf.com
5
IRG/B/S/SL6B60K
700 600 500
Energy (µJ)
1000
tdOFF
Swiching Time (ns)
EON
100
400 300 200 100 0 0 5 10 IC (A) 15 20 EOFF
tF tdON
10
tR
1 0 5 10 15 20
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V
Fig. 13 - Typ. Switching Time vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V
250
1000
200
EOFF
Swiching Time (ns)
100
tdOFF
Energy (µJ)
150
EON
100
tdON tR tF
10
50
0 0 50 100 150 200
1 0 50 100 150 200
R G ( Ω)
RG ( Ω)
Fig. 14 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V
Fig. 15 - Typ. Switching Time vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V
6
www.irf.com
IRG/B/S/SL6B60K
1000
16
Cies
14 300V 12 400V
Capacitance (pF)
100
10
Coes
VGE (V)
8 6 4 2 0
Cres
10
1 1 10 100
0
5
10
15
20
VCE (V)
Q G , Total Gate Charge (nC)
Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 17 - Typical Gate Charge vs. VGE ICE = 5.0A; L = 600µH
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.01 0.02
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
τJ
Ri (°C/W) τi (sec) 0.708 0.00022 0.447 0.219 0.00089 0.01037
τ1
τ2
Ci= τi /Ri Ci= i/Ri
0.01
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
1E-4 1E-3 1E-2 1E-1
0.001 1E-6 1E-5
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
7
IRG/B/S/SL6B60K
L
L DUT
0
VCC
80 V
+ -
DUT
480V
1K
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp / DUT
Driver
DC
L
360V
- 5V DUT / DRIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
8
www.irf.com
IRG/B/S/SL6B60K
450 400 350 300 250 VCE (V) tf 4
5% V CE 5% ICE 90% ICE
9 8 7 6 5
500
25
400
20
300
TEST CURRENT
15 ICE (A)
200 150 100 50 0 -50 -0.20
Eof f Loss
VCE (V)
I CE (A)
200
90% test current
10
3 2 1
100 tr 0
10% test current 5% V CE
5
0 Eon Loss
0 -1 0.80
0.30 time(µs)
-100 16.00
16.10
16.20 time (µs)
16.30
-5 16.40
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4
500
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4
50
400 VCE 300 VCE (V) ICE
40
30 ICE (A)
200
20
100
10
0 -5.00
0.00
5.00 time (µS)
10.00
0 15.00
Fig. WF3- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3
www.irf.com
9
IRG/B/S/SL6B60K
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103)
10.54 (.415) 10.29 (.405)
3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240)
-B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS HEXFET GATE 1LEAD ASSIGNMENTS
IGBTs, CoPACK 1234GATE COLLECTOR EMITTER COLLECTOR
14.09 (.555) 13.47 (.530)
21- GATE DRAIN 32- DRAINSOURCE 3- SOURCE 4 - DRAIN 4- DRAIN 4.06 (.160) 3.55 (.140)
3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 2X NOTES:
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.92 (.115) 2.64 (.104)
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMP L E : T H IS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE P AR T NU MB E R
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C
10
www.irf.com
IRG/B/S/SL6B60K
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMB LED ON WW 02, 2000 IN T HE AS S EMB LY LINE "L" Note: "P" in as sembly line pos ition indicates "L ead-F ree" INT ERNAT IONAL RECT IFIER LOGO AS S EMB LY LOT CODE PART NUMB E R F 530S DAT E CODE YEAR 0 = 2000 WEEK 02 L INE L
OR
INT E RNAT IONAL RE CT IF IER LOGO ASS E MB LY LOT CODE PART NUMBER F530S DAT E CODE P = DE SIGNAT E S LE AD-F RE E PRODUCT (OPT IONAL) YEAR 0 = 2000 WEE K 02 A = AS SE MBLY SIT E CODE
www.irf.com
11
IRG/B/S/SL6B60K
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking InformaEXAMPLE: THIS IS AN IRL 3103L LOT CODE 1789 AS S EMB LED ON WW 19, 1997 IN T HE AS S EMB LY LINE "C" Note: "P" in ass embly line position indicates "L ead-F ree" INTERNATIONAL RECT IF IER LOGO AS S EMBLY LOT CODE PART NUMBER
DATE CODE YEAR 7 = 1997 WEE K 19 LINE C
OR
INTE RNATIONAL RECT IFIER L OGO PART NUMBER DATE CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBL Y S IT E CODE
AS S EMBL Y LOT CODE
12
www.irf.com
IRG/B/S/SL6B60K
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Notes: VCC= 80% (VCES), VGE =20V, L = 100µH, RG = 100Ω This is only applied to TO-220AB package This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Energy losses include "tail" and diode reverse recovery, using Diode HF03D060ACE. TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04
www.irf.com
13