0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRH7250

IRH7250

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRH7250 - REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTOR - International Rectifier

  • 数据手册
  • 价格&库存
IRH7250 数据手册
PD - 90697B REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTOR 200Volt, 0.11Ω , MEGA RAD HARD HEXFET International Rectifier’s RAD HARD technology HEXFETs demonstrate excellent threshold voltage stability and breakdown voltage stability at total radiaition doses as high as 1x106 Rads(Si). Under identical pre- and post-irradiation test conditions, International Rectifier’s RAD HARD HEXFETs retain identical electrical specifications up to 1 x 105 Rads (Si) total dose. No compensation in gate drive circuitry is required. These devices are also capable of surviving transient ionization pulses as high as 1 x 1012 Rads (Si)/Sec, and return to normal operation within a few microseconds. Since the RAD HARD process utilizes International Rectifier’s patented HEXFET technology, the user can expect the highest quality and reliability in the industry. RAD HARD HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse circuits in space and weapons environments. ® IRH7250 IRH8250 N CHANNEL MEGA HARD RAD Product Summary Part Number IRH7250 IRH8250 BVDSS 200V 200V RDS(on) 0.11Ω 0.11Ω ID 26A 26A Features: n n n n n n n n n n n Radiation Hardened up to 1 x 106 Rads (Si) Single Event Burnout (SEB) Hardened Single Event Gate Rupture (SEGR) Hardened Gamma Dot (Flash X-Ray) Hardened Neutron Tolerant Identical Pre- and Post-Electrical Test Conditions Repetitive Avalanche Rating Dynamic dv/dt Rating Simple Drive Requirements Ease of Paralleling Hermetically Sealed Absolute Maximum Ratings  Parameter ID @ VGS = 12V, TC = 25°C ID @ VGS = 12V, TC = 100°C IDM PD @ TC = 25°C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current ‚ Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy ƒ Avalanche Current ‚ Repetitive Avalanche Energy‚ Peak Diode Recovery dv/dt „ Operating Junction Storage Temperature Range Lead Temperature Weight 26 16 104 150 1.2 ±20 500 26 15 5.0 -55 to 150 Pre-Irradiation IRH7250, IRH8250 Units A W W/°C V mJ A mJ V/ns o C g 300 (0.063 in. (1.6mm) from case for 10s) 11.5 (typical) www.irf.com 1 10/14/98 IRH7250, IRH8250 Devices Pre-Irradiation Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)  Parameter BVDSS Drain-to-Source Breakdown Voltage ∆BV DSS/∆T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage gfs Forward Transconductance IDSS Zero Gate Voltage Drain Current Min 200 — — — 2.0 8.0 — — — — — — — — — — — — — Typ Max Units — 0.27 — — — — — — — — — — — — — — — 5.0 13 — — 0.10 0.11 4.0 — 25 250 100 -100 170 30 60 33 140 140 140 — — V V/°C Ω V S( ) µA Ω Test Conditions VGS = 0V, ID = 1.0mA Reference to 25°C, ID = 1.0mA VGS = 12V, ID = 16A … VGS = 12V, ID = 26A … VDS = VGS, ID = 1.0mA VDS > 15V, IDS = 16A … VDS= 0.8 x Max Rating,VGS=0V VDS = 0.8 x Max Rating VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VGS =12V, ID = 26A VDS = Max Rating x 0.5 VDD = 100V, ID = 26A, RG = 2.35Ω IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LD LS Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance nA nC ns nH Measured from drain Modified MOSFET symlead, 6mm (0.25 in) bol showing the internal from package to center inductances. of die. Measured from source lead, 6mm (0.25 in) from package to source bonding pad. Ciss C oss C rss Input Capacitance Output Capacitance Reverse Transfer Capacitance — — — 4700 850 210 — — — pF VGS = 0V, VDS = 25V f = 1.0MHz Source-Drain Diode Ratings and Characteristics  Parameter IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) ‚ Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min Typ Max Units — — — — — — — — — — 26 104 1.4 820 12 Test Conditions Modified MOSFET symbol showing the integral reverse p-n junction rectifier. Tj = 25°C, IS = 26A, VGS = 0V … Tj = 25°C, IF = 26A, di/dt ≤ 100A/µs VDD ≤ 50V … A V ns µC Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance Parameter RthJC RthJA RthCS Junction-to-Case Junction-to-Ambient Case-to-Sink Min Typ Max Units — — 0.12 — — — 0.83 30 — °C/W Test Conditions Typical socket mount 2 www.irf.com IRH7250, IRH8250 Devices Radiation Performance of Rad Hard HEXFETs International Rectifier Radiation Hardened HEXFETs are tested to verify their hardness capability. The hardness assurance program at International Rectifier comprises three radiation environments. Every manufacturing lot is tested in a low dose rate (total dose) environment per MIL-STD-750, test method 1019 condition A. International Rectifier has imposed a standard gate condition of 12 volts per note 5 and a VDS bias condition equal to 80% of the device rated voltage per note 6. Pre- and post- irradiation limits of the devices irradiated to 1 x 105 Rads (Si) are identical and are presented in Table 1, column 1, IRH7250. Post-irradiation limits of the devices irradiated to 1 x 106 Rads (Si) are presented in Table Radiation Characteristics 1, column 2, IRH8250. The values in Table 1 will be met for either of the two low dose rate test circuits that are used. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. High dose rate testing may be done on a special request basis using a dose rate up to 1 x 1012 Rads (Si)/Sec (See Table 2). International Rectifier radiation hardened HEXFETs have been characterized in heavy ion Single Event Effects (SEE) environments. Single Event Effects characterization is shown in Table 3. Table 1. Low Dose Rate † Parameter BVDSS VGS(th) IGSS IGSS IDSS RDS(on)1 VSD ‡ IRH7250 Min Max IRH8250 Test Conditions ‰ VGS = 0V, ID = 1.0mA VGS = VDS, ID = 1.0mA VGS = 20V VGS = -20 V VDS=0.8 x Max Rating, VGS =0V VGS = 12V, ID = 16A TC = 25°C, IS =26A,VGS = 0V Min 200 1.25 — — — — — Max — 4.5 100 -100 50 0.155 1.4 V nA µA Ω V 100K Rads (Si) 1000K Rads (Si) Units Drain-to-Source Breakdown Voltage 200 — Gate Threshold Voltage … 2.0 4.0 Gate-to-Source Leakage Forward — 100 Gate-to-Source Leakage Reverse — -100 Zero Gate Voltage Drain Current — 25 Static Drain-to-Source … — 0.100 On-State Resistance One Diode Forward Voltage … — 1.4 Table 2. High Dose Rate Parameter VDSS IPP di/dt L1 ˆ 1011 Rads (Si)/sec 1012 Rads (Si)/sec Drain-to-Source Voltage Min Typ Max Min Typ Max Units Test Conditions — — 160 — — 160 V Applied drain-to-source voltage during gamma-dot — 15 — — 15 — A Peak radiation induced photo-current — — 160 — — 8.0 A/µsec Rate of rise of photo-current 1.0 — — 20 — — µH Circuit inductance required to limit di/dt Table 3. Single Event Effects Ion Cu LET (Si) (MeV/mg/cm2) 28 Fluence (ions/cm2) 3x 105 Range (µm) 43 VDSBias (V) 180 VGS Bias (V) -5 www.irf.com 3 IRH7250, IRH8250 Devices Post-Irradiation Fig 1. Typical Response of Gate Threshhold Voltage Vs. Total Dose Exposure Fig 2. Typical Response of On-State Resistance Vs. Total Dose Exposure Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure Fig 4. Typical Response of Drain to Source Breakdown Vs. Total Dose Exposure 4 www.irf.com IRH7250, IRH8250 Devices Post-Irradiation Fig 5. Typical Zero Gate Voltage Drain Current Vs. Total Dose Exposure Fig 6. Typical On-State Resistance Vs. Neutron Fluence Level Fig 8a. Gate Stress of VGSS Equals 12 Volts During Radiation Fig 7. Typical Transient Response of Rad Hard HEXFET During 1x1012 Rad (Si)/Sec Exposure Fig 8b. VDSS Stress Equals 80% of BVDSS During Radiation Fig 9. High Dose Rate (Gamma Dot) Test Circuit www.irf.com 5 IRH7250, IRH8250 Devices Note: Bias Conditions during radiation: VGS = 12 Vdc, VDS = 0 Vdc Radiation Characterstics Fig 10. Typical Output Characteristics Pre-Irradiation Fig 11. Typical Output Characteristics Post-Irradiation 100K Rads (Si) Fig 12. Typical Output Characteristics Post-Irradiation 300K Rads (Si) Fig 13. Typical Output Characteristics Post-Irradiation 1 Mega Rads(Si) 6 www.irf.com IRH7250, IRH8250 Devices Note: Bias Conditions during radiation: VGS = 0 Vdc, VDS = 160 Vdc Radiation Characterstics Fig 14. Typical Output Characteristics Pre-Irradiation Fig 15. Typical Output Characteristics Post-Irradiation 100K Rads (Si) Fig 16. Typical Output Characteristics Post-Irradiation 300K Rads (Si) Fig 17. Typical Output Characteristics Post-Irradiation 1 Mega Rads(Si) www.irf.com 7 IRH7250, IRH8250 Devices Pre-Irradiation Fig 18. Typical Output Characteristics Fig 19. Typical Output Characteristics Fig 20. Typical Transfer Characteristics Fig 21. Normalized On-Resistance Vs. Temperature 8 www.irf.com IRH7250, IRH8250 Devices Pre-Irradiation 30 Fig 22. Typical Capacitance Vs. Drain-to-Source Voltage Fig 23. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 24. Typical Source-Drain Diode Forward Voltage Fig 25. Maximum Safe Operating Area www.irf.com 9 IRH7250, IRH8250 Devices Pre-Irradiation V DS VGS RG RD D.U.T. + -V DD 12V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 27a. Switching Time Test Circuit VDS 90% 10% VGS Fig 26. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 27b. Switching Time Waveforms Fig 28. Maximum Effective Transient Thermal Impedance, Junction-to-Case 10 www.irf.com IRH7250, IRH8250 Devices Pre-Irradiation 1 5V VD S L D R IV E R RG D .U .T IA S + - VD D A 12V 20V tp 0 .0 1 Ω Fig 29a. Unclamped Inductive Test Circuit V (B R )D S S tp Fig 29c. Maximum Avalanche Energy Vs. Drain Current IAS Fig 29b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ QG 12V .2µF .3µF 12 V QGS VG QGD VGS 3mA D.U.T. + V - DS Charge IG ID Current Sampling Resistors Fig30a. Basic Gate Charge Waveform Fig 30b. Gate Charge Test Circuit www.irf.com 11 IRH7250, IRH8250 Devices  See Figures 18 through 31 for pre-irradiation ‚ ƒ „ curves Repetitive Rating; Pulse width limited by maximum junction temperature. Refer to current HEXFET reliability report. VDD = 25V, Starting TJ = 25°C, Peak IL = 26A,L=1.9mH, RG=25Ω ISD ≤ 26A, di/dt ≤ 190A/µs, VDD ≤ BVDSS, TJ ≤ 150°C Suggested RG =2.35Ω Pulse width ≤ 300 µs; Duty Cycle ≤ 2% Pre-Irradiation † Total Dose Irradiation with VGS Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, codition A. ‡ Total Dose Irradiation with VDS Bias. VDS = 0.8 rated BVDSS (pre-radiation) applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A. ˆ This test is performed using a flash x-ray source operated in the e-beam mode (energy ~2.5 MeV), 30 nsec pulse. ‰ All Pre-Irradiation and Post-Irradiation test conditions are identical to facilitate direct comparison for circuit applications. … Case Outline and Dimensions — TO-204AE Conforms to JEDEC Outline TO-204AE Dimensions in Millimeters and ( Inches ) WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 10/98 12 www.irf.com
IRH7250 价格&库存

很抱歉,暂时无法提供与“IRH7250”相匹配的价格&库存,您可以联系我们找货

免费人工找货