0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRHM4130

IRHM4130

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRHM4130 - RADIATION HARDENED POWER MOSFET THRU-HOLE - International Rectifier

  • 数据手册
  • 价格&库存
IRHM4130 数据手册
PD - 90707D RADIATION HARDENED POWER MOSFET THRU-HOLE (T0-254AA) Product Summary Part Number Radiation Level IRHM7130 100K Rads (Si) IRHM3130 300K Rads (Si) IRHM4130 600K Rads (Si) IRHM8130 1000K Rads (Si) R DS(on) 0.18 Ω 0.18 Ω 0.18 Ω 0.18 Ω ID 14A 14A 14A 14A IRHM7130 100V, N-CHANNEL RAD Hard HEXFET TECHNOLOGY HEXFET TECHNOLOGY ™ ® TO-254AA International Rectifier’s RADHard HEXFET® technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters. Features: ! ! ! ! ! ! ! ! ! Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Proton Tolerant Simple Drive Requirements Ease of Paralleling Hermetically Sealed Ceramic Package Light Weight Absolute Maximum Ratings Absolute Parameter ID @ VGS = 12V, TC = 25°C ID @ VGS = 12V, TC = 100°C IDM PD @ TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current Continuous Drain Current Pulsed Drain Current ➀ Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy ➁ Avalanche Current ➀ Repetitive Avalanche Energy ➀ Peak Diode Recovery dv/dt ➂ Operating Junction Storage Temperature Range Lead Temperature Weight For footnotes refer to the last page 14 9.0 56 75 0.60 ±20 160 14 7.5 5.5 -55 to 150 Pre-Irradiation Units A W W/°C V mJ A mJ V/ns o C 300 ( 0.063 in.(1.6mm) from case for 10s) 9.3(Typical ) g www.irf.com 1 7/5/01 IRHM7130 Pre-Irradiation @ Tjj = 25°C (Unless Otherwise Specified) T Min 100 — — — 2.0 3.3 — — — — — — — — — — — — Electrical Characteristics Parameter Typ Max Units — 0.12 — — — — — — — — — — — — — — — 6.8 — — 0.18 0.20 4.0 — 25 250 100 -100 45 11 17 30 120 49 64 — V V/°C Ω V S( ) µA Ω Test Conditions VGS = 0V, ID = 1.0mA Reference to 25°C, ID = 1.0mA VGS = 12V, ID =9.0A ➃ VGS = 12V, ID = 14A VDS = VGS, ID = 1.0mA VDS > 15V, IDS = 9.0A ➃ VDS= 80V ,VGS=0V VDS = 80V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VGS =12V, ID =14A VDS = 50V VDD = 50V, ID =14A VGS =12V, RG = 7.5Ω BVDSS Drain-to-Source Breakdown Voltage ∆ BV DSS / ∆ T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current IGSS IGSS Qg Q gs Qgd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance nA nC ns nH Measured from Drain lead (6mm /0.25in. from package) to Source lead (6mm /25in. from package) with Source wires internally bonded from Source Pin to Drain Pad Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance — — — 1100 310 55 — — — pF VGS = 0V, VDS = 25V f = 1.0MHz Source-Drain Diode Ratings and Characteristics Parameter IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) ➀ Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min Typ Max Units — — — — — — — — — — 14 56 1.8 370 3.5 Test Conditions A V nS µC Tj = 25°C, IS = 14A, VGS = 0V ➃ Tj = 25°C, IF = 14A, di/dt ≤ 100A/µs VDD ≤ 50V ➃ Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance Parameter R thJC RthJA RthCS Junction-to-Case Junction-to-Ambient Case-to-Sink Min Typ Max Units — — — — 1.67 — 48 0.21 — °C/W Test Conditions Typical socket mount Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page 2 www.irf.com Radiation Characteristics Pre-Irradiation IRHM7130 International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ➄➅ Parameter 100K Rads(Si) Min Min 300 - 1000K Rads (Si) Max Min Units Max V nA µA Ω Ω V Test Conditions Test BVDSS V/5JD IGSS IGSS IDSS RDS(on) RDS(on) VSD Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source" ➃ On-State Resistance (TO-3) Static Drain-to-Source" ➃ On-State Resistance (TO-254AA) Diode Forward Voltage" ➃ 100 2.0 — — — — — — — 4.0 100 -100 25 0.18 0.18 1.8 100 1.25 — — — — — — — 4.5 100 -100 25 0.24 0.24 1.8 VGS = 0V, ID = 1.0mA VGS = VDS, ID = 1.0mA VGS = 20V VGS = -20 V VDS=80V, VGS =0V VGS = 12V, ID =9.0A VGS = 12V, ID =9.0A VGS = 0V, IS = 14A 1. Part numbers IRHM7130 2. Part number IRHM8130, IRHM3130 and IRHM4130 International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2. Table 2. Single Event Effect Safe Operating Area Ion Cu Br LET MeV/(mg/cm )) 28 36.8 Energy (MeV) 285 305 Range (µm) 43 39 VDS(V) @VGS=0V @VGS=-5V@VGS=-10V@VGS=-15V@VGS=-20V 100 100 100 80 60 100 90 70 50 — 120 100 80 VDS 60 40 20 0 0 -5 -10 VGS -15 -20 -25 Cu Br Fig a. Single Event Effect, Safe Operating Area For footnotes refer to the last page www.irf.com 3 IRHM7130 Post-Irradiation Pre-Irradiation Fig 1. Typical Response of Gate Threshhold Fig 2. Typical Response of On-State Resistance Vs. Total Dose Exposure Voltage Vs. Total Dose Exposure Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure Fig 4. Typical Response of Drain to Source Breakdown Vs. Total Dose Exposure 4 www.irf.com Post-Irradiation Pre-Irradiation IRHM7130 Fig 5. Typical Zero Gate Voltage Drain Current Vs. Total Dose Exposure Fig 6. Typical On-State Resistance Vs. Neutron Fluence Level Fig 8a. Gate Stress of VGSS Equals 12 Volts During Radiation Fig 7. Typical Transient Response of Rad Hard HEXFET During 1x1012 Rad (Si)/Sec Exposure Fig 8b. VDSS Stress Equals 80% of BVDSS During Radiation www.irf.com 5 IRHM7130 Note: Bias Conditions during radiation: V/5 = 12 Vdc, V,5 = 0 Vdc Characteristics RadiationPost-Irradiation Pre-Irradiation Fig 9. Typical Output Characteristics Pre-Irradiation Fig 10. Typical Output Characteristics Post-Irradiation 100K Rads (Si) Fig 11. Typical Output Characteristics Post-Irradiation 300K Rads (Si) Fig 12. Typical Output Characteristics Post-Irradiation 1 Mega Rads (Si) 6 www.irf.com Radiation Characteristics Pre-Irradiation Note: Bias Conditions during radiation: V/5 = 0 Vdc, V,5 = 80 Vdc IRHM7130 Fig 13. Typical Output Characteristics Pre-Irradiation Fig 14. Typical Output Characteristics Post-Irradiation 100K Rads (Si) Fig 15. Typical Output Characteristics Post-Irradiation 300K Rads (Si) Fig 16. Typical Output Characteristics Post-Irradiation 1 Mega Rads (Si) www.irf.com 7 IRHM7130 Pre-Irradiation Fig 17. Typical Output Characteristics Fig 18. Typical Output Characteristics Fig 19. Typical Transfer Characteristics Fig 20. Normalized On-Resistance Vs. Temperature 8 www.irf.com Pre-Irradiation IRHM7130 29 Fig 21. Typical Capacitance Vs. Drain-to-Source Voltage Fig 22. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 23. Typical Source-Drain Diode Forward Voltage Fig 24. Maximum Safe Operating Area www.irf.com 9 IRHM7130 Pre-Irradiation VDS VGS RG RD D.U.T. + -VDD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 26a. Switching Time Test Circuit VDS 90% 10% VGS Fig 25. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 26b. Switching Time Waveforms Fig 27. Maximum Effective Transient Thermal Impedance, Junction-to-Case 10 www.irf.com Pre-Irradiation IRHM7130 15V VDS L DRIVER RG D.U.T IAS tp + - VDD A V/5 20V 0.01Ω Fig 28a. Unclamped Inductive Test Circuit V(BR)DSS tp Fig 28c. Maximum Avalanche Energy Vs. Drain Current I AS Fig 28b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ QG 12V .2µF .3µF 12 V QGS VG QGD VGS 3mA D.U.T. + V - DS Charge IG ID Current Sampling Resistors Fig 29a. Basic Gate Charge Waveform Fig 29b. Gate Charge Test Circuit www.irf.com 11 IRHM7130 Pre-Irradiation Foot Notes: Foot ➀ Repetitive Rating; Pulse width limited by maximum junction temperature. ➁ VDD = 25V, starting TJ = 25°C, L=1.63mH Peak IL = 14A, VGS =12V ➂ ISD ≤ 14A, di/dt ≤ 140A/µs, VDD ≤ 100V, TJ ≤ 150°C ➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2% ➄ Total Dose Irradiation with VGS Bias. Total 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A. ➅ Total Dose Irradiation with VDS Bias. Total 80 volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A. Case Outline and Dimensions — TO-254AA .12 ( .005 ) 3.78 ( .149 ) 3.53 ( .139 ) -A13.84 ( .545 ) 13.59 ( .535 ) 6.60 ( .260 ) 6.32 ( .249 ) -B1.27 ( .050 ) 1.02 ( .040 ) 17.40 ( .685 ) 16.89 ( .665 ) 31.40 ( 1.235 ) 30.39 ( 1.199 ) 1 2 3 20.32 ( .800 ) 20.07 ( .790 ) 13.84 ( .545 ) 13.59 ( .535 ) LEGEND 1 - COLL 2 - EMIT 3 - GATE -C- 3.81 ( .150 ) 2X 3X 1.14 ( .045 ) 0.89 ( .035 ) .50 ( .020 ) .25 ( .010 ) M C AM B MC 3.81 ( .150 ) LEGEND 1- DRAIN 2- SOURCE 3- GATE IRHM57163SED IRHM57163SEU CAUTION BERYLLIA WARNING PER MIL-PRF-19500 BERYLLIA Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. . Data and specifications subject to change without notice. 07/01 12 www.irf.com
IRHM4130 价格&库存

很抱歉,暂时无法提供与“IRHM4130”相匹配的价格&库存,您可以联系我们找货

免费人工找货