PD - 91737A
RADIATION HARDENED POWER MOSFET SURFACE MOUNT(SMD-3)
Product Summary
Part Number IRHNA7064 IRHNA3064 IRHNA4064 IRHNA8064 Radiation Level RDS(on) 100K Rads (Si) 0.015Ω 300K Rads (Si) 0.015Ω 600K Rads (Si) 0.015Ω 1000K Rads (Si) 0.015Ω HEXFET® ID 75*A 75*A 75*A 75*A
IRHNB7064 60V, N-CHANNEL
RAD Hard HEXFET TECHNOLOGY
™ ®
SMD-3
International Rectifier’s RADHard technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.
Features:
n n n n n n n n n
Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Proton Tolerant Simple Drive Requirements Ease of Paralleling Hermetically Sealed Surface Mount Light Weight
Absolute Maximum Ratings
Parameter
ID @ VGS = 12V, TC = 25°C ID @ VGS = 12V, TC = 100°C IDM PD @ TC = 25°C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current ➀ Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy ➁ Avalanche Current ➀ Repetitive Avalanche Energy ➀ Peak Diode Recovery dv/dt ➂ Operating Junction Storage Temperature Range Package Mounting Surface Temperature Weight For footnotes refer to the last page *Current is limited by pin diameter 75* 56 300 300 2.4 ±20 500 75* 30 2.5 -55 to 150 300 ( for 5 sec.) 3.5 (Typical )
Pre-Irradiation
Units A
W
W/°C
V mJ A mJ V/ns
o
C
g
www.irf.com
1
12/12/01
IRHNB7064
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Parameter
BVDSS Drain-to-Source Breakdown Voltage ∆ BV DSS/ ∆ T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current
Min
60 — — — 2.0 18 — — — — — — — — — — — — — — —
Typ Max Units
— 0.056 — — — — — — — — — — — — — — — 4.0 4900 2800 860 — — 0.015 0.018 4.0 — 25 250 100 -100 260 60 86 27 120 76 93 — — — — V V/°C Ω V S( ) µA
Ω
Test Conditions
VGS = 0V, ID = 1.0mA Reference to 25°C, ID = 1.0mA VGS = 12V, ID = 56A ➃ VGS = 12V, ID = 75A VDS = VGS, ID = 1.0mA VDS > 15V, IDS = 56A ➃ VDS= 48V ,VGS=0V VDS = 48V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VGS =12V, ID = 75A VDS = 30V VDD =30V, ID = 75A VGS =12V, RG = 2.35Ω
IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD C iss Coss Crss
Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance
nA
nC
ns
nH
pF
Measured from the center of drain pad to center of source pad VGS = 0V, VDS = 25V f = 1.0MHz
Source-Drain Diode Ratings and Characteristics
Parameter
IS ISM VSD t rr Q RR ton Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) ➀ Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min Typ Max Units
— — — — — — — — — — 75* 356 3.0 220 3.1
Test Conditions
A
V nS µC Tj = 25°C, IS = 75A, VGS = 0V ➃ Tj = 25°C, IF = 75A, di/dt ≤ 100A/µs VDD ≤ 50V ➃
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
*Current is limited by the internal wire diameter
Thermal Resistance
Parameter
R thJC RthJ-PCB Junction-to-Case Junction-to-PC board
Min Typ Max Units
— — — 1.6 0.42 —
°C/W
Test Conditions
Soldered to a 1” sq. copper-clad board
Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics Pre-Irradiation
IRHNB7064
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ➄➅
Parameter
BVDSS VGS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source ➃ On-State Resistance (TO-3) Static Drain-to-Source ➃ On-State Resistance (SMD-3) Diode Forward Voltage ➃
100 K Rads (Si)1
300-1000K Rads (Si)2
Units V nA µA Ω Ω V
Test Conditions
VGS = 12V, ID = 1.0mA VGS = VDS, ID = 1.0mA VGS = 20V VGS = -20 V VDS=48V, VGS =0V VGS = 12V, ID =56A VGS = 12V, ID =56A VGS = 0V, IS = 75A
Min 60 2.0 — — — — — —
Max — 4.0 100 -100 25 0.015 0.015 3.0
Min 60 1.25 — — — — — —
Max — 4.5 100 -100 50 0.025 0.025 3.0
1. Part number IRHNB7064 2. Part numbers IRHNB8064, RHNB3064, and IRHNB4064
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
Ion LE T MeV/(mg/cm²)) 59.9 36.8 Energy (MeV) 345 305 Range (µm) @VGS=0V I Br 32.8 39 60 40 @VGS=-5V 60 35 VD S(V) @VGS=-10V @VGS=-15V @VGS=-20V 45 30 40 25 30 20
70 60 50 VDS 40 30 20 10 0 0 -5 -10 VGS -15 -20 BR I
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHNB7064
Pre-Irradiation
1000
I D , Drain-to-Source Current (A)
100
I D , Drain-to-Source Current (A)
VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V TOP
1000
VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V TOP
100
10 0.1
20µs PULSE WIDTH 5.0V T = 25 °C J
1 10 100
10 0.1
5.0V 20µs PULSE WIDTH TJ = 150 °C
10
1
100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.0
R DS(on) , Drain-to-Source On Resistance (Normalized)
89A ID = 75A
I D , Drain-to-Source Current (A)
TJ = 25 ° C
1.5
100
TJ = 150 ° C
1.0
0.5
10 5 6 7 8
V DS = 25V 20µs PULSE WIDTH 10 11 9 12
0.0 -60 -40 -20
VGS = 12V
0 20 40 60 80 100 120 140 160
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature( °C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
4
www.irf.com
Pre-Irradiation
IRHNB7064
10000
8000
VGS , Gate-to-Source Voltage (V)
C, Capacitance (pF)
VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd
20
ID 35A = 75A
16
VDS = 48V VDS = 30V VDS = 12V
6000
Ciss C oss
12
4000
8
2000
C rss
4
0 1 10 100
0 0 50 100
FOR TEST CIRCUIT SEE FIGURE 13
150 200 250
VDS , Drain-to-Source Voltage (V)
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000
1000
ISD , Reverse Drain Current (A)
TJ = 25 ° C TJ = 150 ° C
OPERATION IN THIS AREA LIMITED BY R
DS(on)
I D , Drain Current (A)
100
100
100us
1ms 10ms
10
10
1 0.0
V GS = 0 V
1.0 2.0 3.0 4.0 5.0
1
TC = 25 ° C TJ = 150 ° C Single Pulse
1 10 100 1000
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
www.irf.com
5
IRHNB7064
Pre-Irradiation
120
LIMITED BY PACKAGE
100
VDS VGS RG
RD
D.U.T.
+
I D , Drain Current (A)
80
-VDD
VGS
60
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
40
Fig 10a. Switching Time Test Circuit
VDS
20
90%
0 25 50 75 100 125 150
TC , Case Temperature ( ° C)
10% VGS
td(on) tr t d(off) tf
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10b. Switching Time Waveforms
1
Thermal Response (Z thJC )
D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01
0.01
SINGLE PULSE (THERMAL RESPONSE)
0.001 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJC + TC 0.1 0.0001 0.001 0.01 1
P DM t1 t2
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
Pre-Irradiation
IRHNB7064
1400
EAS , Single Pulse Avalanche Energy (mJ)
15V
1200
1000
TOP BOTTOM ID 16A 22A 35A
VDS
L
D R IV E R
800
RG
D .U .T
IA S
+ - VD D
600
A
VGS 20V
tp
0 .01 Ω
400 200
Fig 12a. Unclamped Inductive Test Circuit
0 25 50 75 100 125 150
V (B R )D S S tp
Starting TJ , Junction Temperature ( °C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50KΩ
QG
12V
.2µF
.3µF
12 V
QGS VG QGD
VGS
3mA
D.U.T.
+ V - DS
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
www.irf.com
7
IRHNB7064
Pre-Irradiation
Foot Notes:
➀ Repetitive Rating; Pulse width limited by
maximum junction temperature. ➁ VDD = 25V, starting TJ = 25°C, L=0.17mH Peak IL = 75A, VGS =12V ➂ ISD ≤ 75A, di/dt ≤ 220A/µs, VDD ≤ 60V, TJ ≤ 150°C
➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2% ➄ Total Dose Irradiation with VGS Bias.
12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A. ➅ Total Dose Irradiation with VDS Bias. 48 volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A.
Case Outline and Dimensions — SMD-3
PAD ASSIGNMENTS
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/01
8
www.irf.com