PD - 94390
IRLI3615
HEXFET® Power MOSFET
l l l l l l
Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Fully Avalanche Rated
D
VDSS = 150V
G S
RDS(on) = 0.085 Ω ID = 14A
Description
Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 Fullpak eliminates the need for additional insulating hardware in commercial-industrial applications. The moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The Fullpak is mounted to a heatsink using a single clip or by a single screw fixing.
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 srew
Max.
14
9.8 56 45 0.30 ±16 340 8.4 4.5 5.0 -55 to + 175 300 (1.6mm from case ) 10 lbf•in (1.1N•m)
Units
A W W/°C V mJ A mJ V/ns °C
Thermal Resistance
Parameter
RθJC RθJA Junction-to-Case Junction-to-Ambient
Typ.
––– –––
Max.
3.3 65
Units
°C/W
www.irf.com
1
01/30/02
IRLI3615
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)DSS
∆V(BR)DSS/∆TJ
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance
RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss
Min. Typ. Max. Units Conditions 150 ––– ––– V VGS = 0V, ID = 250µA ––– 0.18 ––– V/°C Reference to 25°C, ID = 1mA ––– ––– 0.085 VGS = 10V, ID = 8.4A ––– ––– 0.095 Ω VGS = 5.0V, ID = 8.4A 1.0 ––– 2.0 V VDS = VGS, ID = 250µA 14 ––– ––– S VDS = 50V, ID = 8.4A ––– ––– 25 VDS = 150V, VGS = 0V µA ––– ––– 250 VDS = 120V, VGS = 0V, TJ = 150°C ––– ––– 100 VGS = 16V nA ––– ––– -100 VGS = -16V ––– ––– 140 ID = 8.4A ––– ––– 9.5 nC VDS = 120V ––– ––– 53 VGS = 10V, See Fig. 6 and 13 ––– 8.3 ––– VDD = 75V ––– 20 ––– ID = 8.4A ns ––– 110 ––– RG = 6.2Ω, VGS = 10V ––– 53 ––– RD = 8.9Ω, See Fig. 10 Between lead, ––– 4.5 ––– 6mm (0.25in.) nH from package ––– 7.5 ––– G and center of die contact ––– 1600 ––– VGS = 0V ––– 290 ––– pF VDS = 25V ––– 150 ––– ƒ = 1.0MHz, See Fig. 5
D
S
Source-Drain Ratings and Characteristics
IS
ISM
VSD trr Q rr ton Notes:
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time
Min. Typ. Max. Units
Conditions D MOSFET symbol ––– ––– 14
showing the A G integral reverse ––– ––– 56 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 8.4A, VGS = 0V ––– 180 270 ns TJ = 25°C, IF = 8.4A ––– 1130 1700 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 9.5mH RG = 25Ω, I AS = 8.4A. (See Figure 12) ISD ≤ 8.4A, di/dt ≤ 510A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Pulse width ≤ 300µs; duty cycle ≤ 2%.
Caculated continuous current based on maximum allowable
junction temperature; for recommended current-handling of the package refer to Design Tip # 93-4.
2
www.irf.com
IRLI3615
100
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
VGS 15V 10V 7.0V 5.5V 4.5V 4.0V 3.5V BOTTOM 2.7V TOP
100
VGS 15V 10V 7.0V 5.5V 4.5V 4.0V 3.5V BOTTOM 2.7V TOP
10
10
2.7V
2.7V
1 0.1
20µs PULSE WIDTH T = 25 C
J ° 1 10 100
1 0.1
20µs PULSE WIDTH T = 175 C
J ° 1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
3.5
I D , Drain-to-Source Current (A)
TJ = 25 ° C TJ = 175 ° C
R DS(on) , Drain-to-Source On Resistance (Normalized)
ID = 14A
3.0
2.5
2.0
10
1.5
1.0
1 2.0
V DS = 50V 20µs PULSE WIDTH 5.0 6.0 3.0 4.0 7.0
0.5
0.0 -60 -40 -20
VGS = 10V
0 20 40 60 80 100 120 140 160 180
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature ( °C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRLI3615
100000 VGS = 0V, f = 1 MHZ Ciss = C + C , C gs gd ds SHORTED Crss = C gd Coss = C + Cgd ds
20
ID = 8.4A
VGS , Gate-to-Source Voltage (V)
16
10000
VDS = 120V VDS = 75V VDS = 30V
C, Capacitance(pF)
Ciss
1000
12
Coss
100
8
Crss
4
10 1 10 100 1000
0 0 20 40 60
FOR TEST CIRCUIT SEE FIGURE 13
100 120 80 140
VDS, Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
1000
ISD , Reverse Drain Current (A)
10
TJ = 175 ° C
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA LIMITED BY R (on) DS
100
10
100µs 1ms
1
TJ = 25 ° C V GS = 0 V
0.4 0.6 0.8 1.0 1.2 1.4
1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 100
10ms
0.1 0.2
1000
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRLI3615
14
VDS VGS RG
RD
12
D.U.T.
+
I D , Drain Current (A)
10
-VDD
8
10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
6
4
Fig 10a. Switching Time Test Circuit
VDS
2
90%
0 25 50 75 100 125 150 175
TC , Case Temperature ( ° C)
10% VGS
td(on) tr t d(off) tf
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10b. Switching Time Waveforms
10
Thermal Response (Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01
SINGLE PULSE (THERMAL RESPONSE) 0.0001 0.001 0.01
0.01 0.00001
Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.1 1
PDM t1 t2 10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRLI3615
1000
EAS , Single Pulse Avalanche Energy (mJ)
1 5V
800
TOP BOTTOM ID 3.4A 5.9A 8.4A
VDS
L
D R IV E R
600
RG
20V tp
D .U .T
IA S
+ V - DD
A
400
0 .0 1 Ω
Fig 12a. Unclamped Inductive Test Circuit
200
0 25 50 75 100 125 150 175
V (B R )D SS tp
Starting TJ , Junction Temperature ( °C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50KΩ
QG
12V
.2µF
.3µF
10 V
QGS VG QGD
VGS
3mA
D.U.T.
+ V - DS
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
6
www.irf.com
IRLI3615
Peak Diode Recovery dv/dt Test Circuit
D.U.T
+
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
-
+
RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
+ VDD
Driver Gate Drive P.W. Period D=
P.W. Period VGS=10V
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
VDD
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRLI3615
Package Outline
TO-220 Fullpak Outline Dimensions are shown in millimeters (inches)
1 0 .6 0 (.4 1 7 ) 1 0 .4 0 (.4 0 9 ) ø 3 .4 0 (.1 3 3 ) 3 .1 0 (.1 2 3 ) -A3 .7 0 (.1 4 5 ) 3 .2 0 (.1 2 6 ) 4 .8 0 (.1 8 9 ) 4 .6 0 (.1 8 1 ) 2 .8 0 (.1 1 0 ) 2 .6 0 (.1 0 2 ) L E A D A S S IG N M E N T S 1 - G A TE 2 - D R A IN 3 - S O U RC E
7 .10 (.2 8 0 ) 6 .70 (.2 6 3 )
1 6 .0 0 (.6 3 0 ) 1 5 .8 0 (.6 2 2 )
1 .1 5 (.0 4 5 ) M IN. 1 2 3
N O TE S : 1 D IM E N S IO N ING & T O L E R A N C ING P E R A N S I Y 1 4 .5 M , 1 9 8 2 2 C O N T R O L L IN G D IM E N S ION : IN C H .
3.3 0 (.1 30 ) 3.1 0 (.1 22 ) -B1 3 .7 0 (.5 4 0 ) 1 3 .5 0 (.5 3 0 ) C D
A 3X 1 .4 0 (.0 5 5) 1 .0 5 (.0 4 2) 0 .9 0 (.0 35 ) 3 X 0 .7 0 (.0 28 ) 0 .2 5 (.0 1 0 ) 2 .5 4 (.1 0 0 ) 2X M AM B 3X 0.4 8 (.0 1 9 ) 0.4 4 (.0 1 7 )
B
2 .8 5 (.1 1 2 ) 2 .6 5 (.1 0 4 )
M IN IM U M C R E E P A G E D IS T A NC E B E TW E E N A -B -C -D = 4.8 0 (.1 8 9 )
Part Marking Information
TO-220 Fullpak
EXAMPLE: T HIS IS AN IRFI840G WIT H ASSEMBLY LOT CODE 3432 ASSEMBLED ON WW 24 1999 IN T HE ASSEMBLY LINE "K"
INT ERNAT IONAL RECT IFIER LOGO ASSEMBLY LOT CODE
PART NUMBER
IRFI840G 924K 34 32
DAT E CODE YEAR 9 = 1999 WEEK 24 LINE K
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/02
8
www.irf.com