PD - 95852
DIGITAL AUDIO MOSFET
IRLIB9343
Features
Advanced Process Technology l Key Parameters Optimized for Class-D Audio Amplifier Applications l Low RDSON for Improved Efficiency l Low Qg and Qsw for Better THD and Improved Efficiency l Low Qrr for Better THD and Lower EMI l 175°C Operating Junction Temperature for Ruggedness l Repetitive Avalanche Capability for Robustness and Reliability
l
Key Parameters
VDS RDS(ON) typ. @ VGS = -10V RDS(ON) typ. @ VGS = -4.5V Qg typ. TJ max
D
-55 93 150 31 175
V m: m: nC °C
G S
TO-220 Full-Pak
Description
This Digital Audio HEXFET® is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MosFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier applications.
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C PD @TC = 100°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ -10V Continuous Drain Current, VGS @ -10V Pulsed Drain Current
Max.
-55 ±20 -14 -10 -60 33 20 0.26 -40 to + 175 10 (1.1)
Units
V A
c
Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Mounting Torque, 6-32 or M3 screw
W W/°C °C lbf in (N m)
y
y
Thermal Resistance
RθJC RθJA Junction-to-Case
f
Parameter
Typ.
––– –––
Max.
3.84 65
Units
°C/W
Junction-to-Ambient
f
Notes through
are on page 7
www.irf.com
1
4/1/04
IRLIB9343
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs Qgd Qgodr td(on) tr td(off) tf Ciss Coss Crss Coss LD LS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance Internal Drain Inductance Internal Source Inductance
Min.
-55 ––– ––– ––– -1.0 ––– ––– ––– ––– ––– 5.3 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Typ. Max. Units
––– -52 93 150 ––– -3.7 ––– ––– ––– ––– ––– 31 7.1 8.5 15 9.5 24 21 9.5 660 160 72 280 4.5 7.5 ––– ––– 105 170 ––– ––– -2.0 -25 -100 100 ––– 47 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– nH ––– pF VGS = 0V VDS = -50V ns S nA V
Conditions
VGS = 0V, ID = -250µA
mV/°C Reference to 25°C, ID = -1mA mΩ VGS = -10V, ID = -3.4A e VGS = -4.5V, ID = -2.7A e V mV/°C µA VDS = -55V, VGS = 0V VDS = -55V, VGS = 0V, TJ = 125°C VGS = -20V VGS = 20V VDS = -25V, ID = -14A VDS = -44V VGS = -10V ID = -14A See Fig. 6 and 19 VDD = -28V, VGS = -10V e ID = -14A RG = 2.5Ω VDS = VGS, ID = -250µA
ƒ = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to -44V Between lead, 6mm (0.25in.) from package and center of die contact
Avalanche Characteristics
Parameter Typ. Max. Units mJ A mJ
EAS IAR EAR
Single Pulse Avalanche Energyd Avalanche Current g Repetitive Avalanche Energy g
–––
190
See Fig. 14, 15, 17a, 17b
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current ISM VSD trr Qrr (Body Diode) Pulsed Source Current (Body Diode) c Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
Min.
––– ––– ––– ––– –––
Typ. Max. Units
––– ––– ––– 57 120 -14 A -60 -1.2 86 180 V ns nC
Conditions
MOSFET symbol showing the integral reverse
G S D
p-n junction diode. TJ = 25°C, IS = -14A, VGS = 0V e TJ = 25°C, IF = -14A di/dt = 100A/µs e
2
www.irf.com
IRLIB9343
100
TOP VGS -15V -12V -10V -8.0V -5.5V -4.5V -3.0V -2.5V
100
TOP VGS -15V -12V -10V -8.0V -5.5V -4.5V -3.0V -2.5V
-I D, Drain-to-Source Current (A)
-I D, Drain-to-Source Current (A)
10
BOTTOM
10
BOTTOM
1
1
-2.5V ≤ 60µs PULSE WIDTH Tj = 175°C
-2.5V
≤ 60µs PULSE WIDTH Tj = 25°C
10 100
0.1 0.1 1
0.1 0.1 1 10 100
-VDS, Drain-to-Source Voltage (V)
-VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100.0
Fig 2. Typical Output Characteristics
2.0
RDS(on) , Drain-to-Source On Resistance (Normalized)
-I D, Drain-to-Source Current (Α)
T J = 25°C T J = 175°C
10.0
ID = -14A VGS = -10V
1.5
1.0
1.0
VDS = -25V ≤ 60µs PULSE WIDTH
0.1 0.0 5.0 10.0 15.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
-V GS, Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
20
-VGS, Gate-to-Source Voltage (V)
10000
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
ID= -14A 16
C, Capacitance (pF)
VDS= -44V VDS= -28V VDS= -11V
1000
Ciss Coss
100
12
8
Crss
4
FOR TEST CIRCUIT SEE FIGURE 19
10 1 10 100
0 0 10 20 30 40 50 QG Total Gate Charge (nC)
-V DS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
www.irf.com
3
IRLIB9343
100.0
1000
-I SD, Reverse Drain Current (A)
T J = 175°C
10.0
-I D, Drain-to-Source Current (A)
OPERATION IN THIS AREA LIMITED BY R DS(on)
100
100µsec
10
1.0
T J = 25°C
VGS = 0V
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
1 1
Tc = 25°C Tj = 175°C Single Pulse
10
1msec 10msec
100
1000
-V SD, Source-to-Drain Voltage (V)
-V DS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
16 2.5
Fig 8. Maximum Safe Operating Area
-I D , Drain Current (A)
12
-VGS(th) Gate threshold Voltage (V)
2.0
8
ID = -250µA
1.5
4
0 25 50 75 100 125 150 175
1.0 -75 -50 -25 0 25 50 75 100 125 150 175
T J , Junction Temperature (°C)
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Case Temperature
10
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC )
D = 0.50
1
0.20 0.10 0.05
τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
0.02 0.01
Ri (°C/W) τi (sec) 0.8737 0.000799 0.877 2.089 0.068578 2.593
τ1
τ2
0.01
Ci= τi/Ri Ci τi/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1 1 10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRLIB9343
RDS(on), Drain-to -Source On Resistance ( mΩ)
EAS, Single Pulse Avalanche Energy (mJ)
600
1000
ID = -14A
500
800
ID -5.0A -5.6A BOTTOM -10A
TOP
400
600
300
400
200
T J = 125°C
100
200
0 4.0 6.0
T J = 25°C
8.0 10.0
0 25 50 75 100 125 150 175
-V GS, Gate-to-Source Voltage (V)
Starting T J, Junction Temperature (°C)
Fig 12. On-Resistance Vs. Gate Voltage
1000
Fig 13. Maximum Avalanche Energy Vs. Drain Current
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
-Avalanche Current (A)
100
Duty Cycle = Single Pulse
0.01
10
0.05 0.10
1
0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current Vs.Pulsewidth
200
EAR , Avalanche Energy (mJ)
160
TOP Single Pulse BOTTOM 1% Duty Cycle ID = -10A
120
80
40
0 25 50 75 100 125 150 175
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
www.irf.com
5
IRLIB9343
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Inductor Curent
Current
Ripple ≤ 5% ISD
*
Reverse Polarity of D.U.T for P-Channel
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for P-Channel HEXFET® Power MOSFETs
VDS
L
VDS
RG
-VGS -20V
RD
D.U.T
IAS
VDD A DRIVER
VGS RG -10V
D.U.T.
+
15V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 17a. Unclamped Inductive Test Circuit
I AS
Fig 18a. Switching Time Test Circuit
td(on) tr t d(off) tf
VGS 10%
tp V(BR)DSS
90% VDS
Fig 17b. Unclamped Inductive Waveforms
Fig 18b. Switching Time Waveforms
Id Vds Vgs
L DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Qgd
Qgodr
Fig 19a. Gate Charge Test Circuit
Fig 19b Gate Charge Waveform
6
-
tp
0.01Ω
VDD
www.irf.com
IRLIB9343
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
10.60 (.417) 10.40 (.409) ø 3.40 (.133) 3.10 (.123) -A3.70 (.145) 3.20 (.126) 4.80 (.189) 4.60 (.181) 2.80 (.110) 2.60 (.102) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE
7.10 (.280) 6.70 (.263)
16.00 (.630) 15.80 (.622)
1.15 (.045) MIN. 1 2 3
NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 2 CONTROLLING DIMENSION: INCH.
3.30 (.130) 3.10 (.122) -B13.70 (.540) 13.50 (.530) C D
A 3X 1.40 (.055) 1.05 (.042) 3X 0.90 (.035) 0.70 (.028) 0.25 (.010) 2.54 (.100) 2X M AM B 3X 0.48 (.019) 0.44 (.017)
B
2.85 (.112) 2.65 (.104)
MINIMUM CREEPAGE DISTANCE BETWEEN A-B-C-D = 4.80 (.189)
TO-220 Full-Pak Part Marking Information
Notes : T his part marking information applies to all devices produced before 02/26/2001 and currently for parts manufactured in GB.
EXAMPLE: T HIS IS AN IRFI840G WIT H AS S EMBLY LOT CODE E401 PART NUMBER
IRFI840G E 401 9245
INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE
DAT E CODE (YYWW) YY = YEAR WW = WEEK
Notes : This part marking information applies to devices produced after 02/26/2001 in location other than GB.
EXAMPLE: T HIS IS AN IRFI840G WIT H ASS EMBLY LOT CODE 3432 AS S EMBLED ON WW 24 1999 IN T HE AS SEMBLY LINE "K"
INT ERNAT IONAL RECT IFIER LOGO AS SEMBLY LOT CODE
PART NUMBER
IRFI840G 924K 34 32
DAT E CODE YEAR 9 = 1999 WEEK 24 LINE K
TO-220 FullPak packages are not recommended for Surface Mount Application.
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Starting TJ = 25°C, L = 3.89mH, Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C.
Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information
RG = 25Ω, IAS = -10A.
Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.4/04
www.irf.com
7