0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRLS3036-7PPBF

IRLS3036-7PPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRLS3036-7PPBF - HEXFET Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRLS3036-7PPBF 数据手册
PD -97148 IRLS3036-7PPbF HEXFET® Power MOSFET Applications l DC Motor Drive l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching G l Hard Switched and High Frequency Circuits Benefits l Optimized for Logic Level Drive l Very Low RDS(ON) at 4.5V VGS l Superior R*Q at 4.5V VGS l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free D S VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) 60V 1.5m: 1.9m: 300Ac 240A D S G S S S S D2Pak 7 Pin G D S Gate Drain Max. 300c 210 240 1000 380 2.5 ± 16 8.1 -55 to + 175 300 300 See Fig. 14, 15, 22a, 22b Source Units A Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current d Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery f Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) W W/°C V V/ns °C Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy e Avalanche Current d Repetitive Avalanche Energy d mJ A mJ Thermal Resistance Symbol RθJC RθJA Parameter Junction-to-Case kl Junction-to-Ambient (PCB Mount, steady state) j Typ. ––– ––– Max. 0.40 40 Units °C/W www.irf.com 1 12/8/08 IRLS3036-7PPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units 60 ––– ––– ––– 1.0 ––– ––– ––– ––– ––– Conditions V(BR)DSS Drain-to-Source Breakdown Voltage ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient RDS(on) VGS(th) IDSS IGSS RG(int) Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance ––– ––– V VGS = 0V, ID = 250μA 0.059 ––– V/°C Reference to 25°C, ID = 5mAd 1.5 1.9 VGS = 10V, ID = 180A g mΩ VGS = 4.5V, ID = 150A g 1.7 2.2 ––– 2.5 V VDS = VGS, ID = 250μA ––– 20 VDS = 60V, VGS = 0V μA ––– 250 VDS = 60V, VGS = 0V, TJ = 125°C ––– 100 VGS = 16V nA ––– -100 VGS = -16V 1.9 ––– Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related)i Effective Output Capacitance (Time Related) h Min. Typ. Max. Units 390 ––– ––– ––– 110 160 ––– 33 ––– ––– 53 ––– ––– 57 ––– ––– 81 ––– ––– 540 ––– ––– 89 ––– ––– 170 ––– ––– 11270 ––– ––– 1025 ––– ––– 520 ––– ––– 1460 ––– ––– 1630 ––– S Conditions VDS = 10V, ID = 180A ID = 180A VDS = 30V nC VGS = 4.5V g ID = 180A, VDS =0V, VGS = 4.5V VDD = 39V ID = 180A ns RG = 2.1Ω VGS = 4.5V g VGS = 0V VDS = 50V pF ƒ = 1.0MHz VGS = 0V, VDS = 0V to 48V i VGS = 0V, VDS = 0V to 48V h Diode Characteristics Symbol IS ISM VSD trr Qrr IRRM ton Notes: Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) e Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– 300 A 1000 Conditions MOSFET symbol showing the integral reverse G S D ––– ––– 1.3 V ––– 57 ––– ns ––– 60 ––– ––– 140 ––– nC TJ = 125°C ––– 160 ––– ––– 4.6 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) p-n junction diode. TJ = 25°C, IS = 180A, VGS = 0V g VR = 51V, TJ = 25°C IF = 180A TJ = 125°C di/dt = 100A/μs g TJ = 25°C  Calcuted continuous current based on maximum allowable junction temperature Bond wire current limit is 195A. Note that current limitation arising from heating of the device leds may occur with some lead mounting arrangements. ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.018mH RG = 25Ω, IAS = 180A, VGS =10V. Part not recommended for use above this value . „ ISD ≤ 180A, di/dt ≤ 1070A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400μs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For Coss while VDS is rising from 0 to 80% VDSS. recommended footprint and soldering techniquea refer to applocation note # AN- 994 echniques refer to application note #AN-994. ‰ Rθ is measured at TJ approximately 90°C. Š RθJC value shown is at time zero. 2 www.irf.com IRLS3036-7PPbF 1000 TOP VGS 15V 10V 4.5V 4.0V 3.5V 3.3V 3.0V 2.7V 1000 TOP VGS 15V 10V 4.5V 4.0V 3.5V 3.3V 3.0V 2.7V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) BOTTOM 10 100 1 2.7V ≤ 60μs PULSE WIDTH Tj = 25°C 2.7V ≤ 60μs PULSE WIDTH Tj = 175°C 10 0.1 1 10 100 0.1 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 1000 2.5 Fig 2. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance ID = 180A 2.0 ID, Drain-to-Source Current(Α) VGS = 10V TJ = 175°C 100 (Normalized) 1.5 TJ = 25°C 10 1.0 VDS = 25V 1 2.0 3.0 ≤ 60μs PULSE WIDTH 4.0 5.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 20000 VGS = 0V, f = 100 kHz Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Fig 4. Normalized On-Resistance vs. Temperature 5 VGS, Gate-to-Source Voltage (V) ID= 180A 4 VDS = 48V VDS = 30V 15000 C, Capacitance (pF) Ciss 10000 3 2 5000 Coss Crss 1 0 1 10 100 0 0 20 40 60 80 100 120 140 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com 3 IRLS3036-7PPbF 1000 10000 ID, Drain-to-Source Current (A) TJ = 175°C OPERATION IN THIS AREA LIMITED BY R DS (on) 100μsec ISD , Reverse Drain Current (A) 100 1000 10 TJ = 25°C 100 1msec 10 LIMITED BY PACKAGE 10msec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 1 VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 DC 0.1 10 100 VSD , Source-to-Drain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 300 LIMITED BY PACKAGE 250 ID , Drain Current (A) V(BR)DSS , Drain-to-Source Breakdown Voltage 80 Fig 8. Maximum Safe Operating Area ID = 5mA 200 150 100 50 0 25 50 75 100 125 150 175 TC , Case Temperature (°C) 70 60 50 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 Fig 9. Maximum Drain Current vs. Case Temperature 4.0 TJ , Junction Temperature (°C) Fig 10. Drain-to-Source Breakdown Voltage 1200 EAS, Single Pulse Avalanche Energy (mJ) 1000 3.0 ID 22A 37A BOTTOM 180A TOP 800 Energy (μJ) 2.0 600 400 1.0 200 0.0 0 10 20 30 40 50 60 70 0 25 50 75 100 125 150 175 VDS, Drain-to-Source Voltage (V) Starting TJ, Junction Temperature (°C) Fig 11. Typical COSS Stored Energy Fig 12. Maximum Avalanche Energy Vs. DrainCurrent 4 www.irf.com IRLS3036-7PPbF 1 D = 0.50 Thermal Response ( Z thJC ) 0.1 0.20 0.10 0.05 0.02 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τC τ1 τ2 τ3 τ3 τ Ri (°C/W) τι (sec) 0.01 Ci= τi/Ri Ci= τi/Ri 0.103731 0.000184 0.196542 0.001587 0.098271 0.006721 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 0.0001 1E-006 1E-005 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) 100 0.01 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 300 EAR , Avalanche Energy (mJ) 250 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 180A 200 150 100 50 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) 175 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRLS3036-7PPbF 3.0 24 VGS(th) Gate threshold Voltage (V) ID = 1.0A 2.5 ID = 1.0mA ID = 250μA 18 2.0 IRRM - (A) 12 1.5 6 IF = 120A VR = 51V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 0 TJ , Temperature ( °C ) dif / dt - (A / μs) Fig 16. Threshold Voltage Vs. Temperature 24 Fig. 17 - Typical Recovery Current vs. dif/dt 1000 800 18 QRR - (nC) IRRM - (A) 600 12 400 IF = 120A VR = 51V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 6 IF = 180A VR = 51V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 200 0 0 dif / dt - (A / μs) dif / dt - (A / μs) Fig. 18 - Typical Recovery Current vs. dif/dt 1000 IF = 180A VR = 51V TJ = 125°C TJ = 25°C Fig. 19 - Typical Stored Charge vs. dif/dt 800 QRR - (nC) 600 400 200 0 100 200 300 400 500 600 700 800 900 dif / dt - (A / μs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRLS3036-7PPbF D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Body Diode Forward Drop Inductor Curent Inductor Current Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V tp DRIVER VDS L RG VGS 20V D.U.T IAS tp + V - DD A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 22b. Unclamped Inductive Waveforms VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) tr t d(off) tf Fig 23a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. Fig 23b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V .2μF .3μF D.U.T. VGS 3mA + V - DS Vgs(th) IG ID Current Sampling Resistors Qgs1 Qgs2 Qgd Qgodr www.irf.com Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform 7 IRLS3036-7PPbF D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRLS3036-7PPbF D2Pak - 7 Pin Part Marking Information 25 D2Pak - 7 Pin Tape and Reel Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/08 www.irf.com 9
IRLS3036-7PPBF 价格&库存

很抱歉,暂时无法提供与“IRLS3036-7PPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货