PD - 95774A
AUTOMOTIVE MOSFET
IRLR2905ZPbF IRLU2905ZPbF
HEXFET® Power MOSFET
D
Features
l l l l l l l
Logic Level Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free
VDSS = 55V
G S
RDS(on) = 13.5mΩ ID = 42A
Description
Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
D-Pak IRLR2905Z
Max.
60 43 42 240 110
I-Pak IRLU2905Z
Units
A
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current IDM
PD @TC = 25°C Power Dissipation VGS EAS (Thermally limited) EAS (Tested ) IAR EAR TJ TSTG Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current
W W/°C V mJ A mJ
d
0.72 ± 16
Single Pulse Avalanche Energy Tested Value
Ã
h
57 85 See Fig.12a, 12b, 15, 16 -55 to + 175
Repetitive Avalanche Energy Operating Junction and Storage Temperature Range
g
°C 300 (1.6mm from case ) 10 lbf in (1.1N m)
Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw
Thermal Resistance
RθJC RθJA RθJA Junction-to-Case
y
y
j
Parameter
Typ.
Max.
1.38 40 110
Units
°C/W
Junction-to-Ambient (PCB mount) Junction-to-Ambient
j
ij
––– ––– –––
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
12/07/04
IRLR/U2905ZPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance
Min. Typ. Max. Units
55 ––– ––– ––– ––– ––– 0.053 11 ––– ––– ––– ––– ––– ––– ––– ––– 23 8.5 12 14 130 24 33 4.5 7.5 1570 230 130 840 180 290 ––– ––– 13.5 20 22.5 3.0 ––– 20 250 200 -200 35 ––– ––– ––– ––– ––– ––– ––– nH ––– ––– ––– ––– ––– ––– ––– pF ns nC nA V
Conditions
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 36A mΩ VGS = 5.0V, ID = 30A mΩ V S µA VGS = 4.5V, ID
e e = 15A e
VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff.
Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance
1.0 25 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
VDS = VGS, ID = 250µA VDS = 25V, ID = 36A VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125°C VGS = 16V VGS = -16V ID = 36A VDS = 44V VGS = 5.0V VDD = 28V ID = 36A RG = 15 Ω VGS = 5.0V
e e
D G S
Between lead, 6mm (0.25in.) from package and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 44V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 44V
f
Source-Drain Ratings and Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– 22 14 42 A 240 1.3 33 21 V ns nC
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 36A, VGS = 0V TJ = 25°C, IF = 36A, VDD = 28V di/dt = 100A/µs
Ã
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRLR/U2905ZPbF
1000
TOP VGS 10V 9.0V 7.0V 5.0V 4.5V 4.0V 3.5V 3.0V
1000
TOP VGS 10V 9.0V 7.0V 5.0V 4.5V 4.0V 3.5V 3.0V
100
BOTTOM
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
100
BOTTOM
10
10
3.0V ≤ 60µs PULSE WIDTH Tj = 175°C
3.0V
1 0.1 1
≤ 60µs PULSE WIDTH Tj = 25°C
10 100
1 0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.0
60
ID, Drain-to-Source Current (Α)
T J = 25°C
Gfs, Forward Transconductance (S)
50 40 30
T J = 175°C
100.0
T J = 175°C
T J = 25°C
10.0
20 10 0 0 10 20 30 40 50 ID, Drain-to-Source Current (A)
VDS = 10V ≤ 60µs PULSE WIDTH
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
VDS = 8.0V 380µs PULSE WIDTH
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance Vs. Drain Current
www.irf.com
3
IRLR/U2905ZPbF
2500 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
12
ID= 36A VDS= 44V VDS= 28V VDS= 11V
VGS, Gate-to-Source Voltage (V)
2000
10 8 6 4 2 0
C, Capacitance (pF)
Ciss
1500
1000
500
Coss Crss
0 1 10 100
0
10
20
30
40
50
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000.0
1000 OPERATION IN THIS AREA LIMITED BY R DS(on)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100.0 T J = 175°C 10.0 T J = 25°C 1.0 VGS = 0V 0.1 0.2 0.6 1.0 1.4 1.8 2.2 VSD, Source-to-Drain Voltage (V)
100
10
100µsec
1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10
1msec 10msec
100
1000
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRLR/U2905ZPbF
60
2.0
RDS(on) , Drain-to-Source On Resistance (Normalized)
LIMITED BY PACKAGE 50
ID , Drain Current (A)
ID = 30A VGS = 5.0V
40 30 20 10 0 25 50 75 100 125 150 175 T C , Case Temperature (°C)
1.5
1.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10. Normalized On-Resistance Vs. Temperature
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10
0.1
0.05 0.02 0.01
τJ
R1 R1 τJ τ1 τ2
R2 R2 τC τ
Ri (°C/W) τi (sec) 0.765 0.000269 0.6141 0.001614
τ1
τ2
0.01
Ci= τi/Ri Ci= i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.001 0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRLR/U2905ZPbF
240
15V
EAS, Single Pulse Avalanche Energy (mJ)
200
VDS
L
DRIVER
ID 36A 6.2A BOTTOM 4.3A
TOP
160
RG
20V VGS
D.U.T
IAS tp
+ V - DD
A
120
0.01Ω
80
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
40
0 25 50 75 100 125 150 175
Starting T J, Junction Temperature (°C)
I AS
Fig 12b. Unclamped Inductive Waveforms
QG
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
10 V
QGS VG QGD
VGS(th) Gate threshold Voltage (V)
3.0
2.5
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator Same Type as D.U.T.
2.0
ID = 250µA
50KΩ 12V .2µF .3µF
1.5
D.U.T. VGS
3mA
+ V - DS
1.0 -75 -50 -25 0 25 50 75 100 125 150 175
T J , Temperature ( °C )
IG ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
Fig 14. Threshold Voltage Vs. Temperature
6
www.irf.com
IRLR/U2905ZPbF
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
0.01
10
0.05 0.10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
1
0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
60
EAR , Avalanche Energy (mJ)
50
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 36A
40
30
20
10
0 25 50 75 100 125 150
Starting T J , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy Vs. Temperature
www.irf.com
7
IRLR/U2905ZPbF
Driver Gate Drive
D.U.T
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
RD
V DS VGS RG 10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
D.U.T.
+
-VDD
Fig 18a. Switching Time Test Circuit
VDS 90%
10% VGS
td(on) tr t d(off) tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRLR/U2905ZPbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 1234 ASSEMBLED ON WW 16, 1999 IN T HE ASSEMBLY LINE "A" Note: "P" in assembly line pos ition indicates "Lead-Free" PART NUMBER INTERNATIONAL RECTIFIER LOGO
IRFU120 12 916A 34
ASSEMBLY LOT CODE
DATE CODE YEAR 9 = 1999 WEEK 16 LINE A
OR
PART NUMBER INTERNATIONAL RECTIFIER LOGO
IRFU120 12 34
DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 16 A = ASSEMBLY SIT E CODE
ASSEMBLY LOT CODE
www.irf.com
9
IRLR/U2905ZPbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
EXAMPLE: THIS IS AN IRF U120 WIT H AS SEMBLY LOT CODE 5678 ASS EMBLE D ON WW 19, 1999 IN T HE AS SEMBLY LINE "A" Note: "P" in as s embly line pos ition indicates "Lead-Free" INTE RNAT IONAL RECTIF IER LOGO PART NUMBE R
IRF U120 919A 56 78
AS SEMBLY LOT CODE
DAT E CODE YEAR 9 = 1999 WEE K 19 LINE A
OR
INT ERNAT IONAL RECT IFIER LOGO PART NUMBER
IRFU120 56 78
AS SEMB LY LOT CODE
DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 19 A = ASS EMBLY SIT E CODE
10
www.irf.com
IRLR/U2905ZPbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR TRR TRL
16.3 ( .641 ) 15.7 ( .619 )
16.3 ( .641 ) 15.7 ( .619 )
12.1 ( .476 ) 11.9 ( .469 )
FEED DIRECTION
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
N OTES : 1 . CONTROLLING DIMENSION : MILLIMETER. 2 . ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3 . OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481.
Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.089mH
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 36A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Rθ is measured at TJ approximately 90°C Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site.
Notes:
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/04
www.irf.com
11