PD - 95956
AUTOMOTIVE MOSFET
Features
l l l l l l l
IRLR3705ZPbF IRLU3705ZPbF
HEXFET® Power MOSFET
D
Description
Logic Level Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free
VDSS = 55V RDS(on) = 8.0mΩ
G S
Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
ID = 42A
D-Pak IRLR3705Z
Max.
89 63 42 360 130 0.88 ± 16
I-Pak IRLU3705Z
Units
A
Absolute Maximum Ratings
Parameter
I D @ T C = 2 5°C Continuous Drain Current, V GS @ 1 0V (Silicon Limited) I D @ T C = 1 00°C Continuous Drain Current, V GS @ 1 0V I D @ T C = 2 5°C Continuous Drain Current, V GS @ 1 0V (Package Limited) Pulsed Drain Current I DM
P D @ T C = 2 5°C Power Dissipation V GS Linear Derating Factor Gate-to-Source Voltage
W W/°C V mJ A mJ
E AS (Thermally limited) S ingle Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value E AS (Tested ) I AR E AR TJ T STG Avalanche Current
d
Ã
h
110 190 See Fig.12a, 12b, 15, 16 -55 to + 175
Repetitive Avalanche Energy O perating Junction and Storage Temperature Range
g
°C 300 (1.6mm from case ) 10 lbf in (1.1N m)
Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw
Thermal Resistance
R θJC R θJA R θJA J unction-to-Case
y
y
j
Parameter
Typ.
Max.
1.14 40 110
Units
°C/W
J unction-to-Ambient (PCB mount) J unction-to-Ambient
j
ij
––– ––– –––
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
12/21/04
IRLR/U3705ZPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance
Min. Typ. Max. Units
55 ––– ––– ––– ––– ––– 0.053 6.5 ––– ––– ––– ––– ––– ––– ––– ––– 44 13 22 17 150 33 70 4.5 7.5 2900 420 230 1550 320 500 ––– ––– 8.0 11 12 3.0 ––– 20 250 200 -200 66 ––– ––– ––– ––– ––– ––– ––– nH ––– ––– ––– ––– ––– ––– ––– pF ns nC nA V S µA V mΩ
Conditions
VGS = 0V, ID = 250µA VGS = 10V, ID = 42A VGS = 5.0V, ID VGS = 4.5V, ID
V/°C Reference to 25°C, ID = 1mA
VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff.
Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance
1.0 89 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
VDS = VGS, ID = 250µA VDS = 25V, ID = 42A VDS = 55V, VGS = 0V
e = 34A e = 21A e
VDS = 55V, VGS = 0V, TJ = 125°C VGS = 16V VGS = -16V ID = 42A VDS = 44V VGS = 5.0V VDD = 28V ID = 42A RG = 4.2 Ω VGS = 5.0V
e e
Between lead, 6mm (0.25in.) from package and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz
G
D
S
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 44V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 44V
f
Source-Drain Ratings and Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– 21 14 42 A 360 1.3 42 28 V ns nC
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 42A, VGS = 0V TJ = 25°C, IF = 42A, VDD = 28V di/dt = 100A/µs
Ã
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRLR/U3705ZPbF
1000
TOP VGS 12V 10V 8.0V 5.0V 4.5V 3.5V 3.0V 2.8V
1000
TOP VGS 12V 10V 8.0V 5.0V 4.5V 3.5V 3.0V 2.8V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
2.8V
10
10
2.8V ≤ 60µs PULSE WIDTH Tj = 25°C
1 0.1 1 10 100
≤ 60µs PULSE WIDTH Tj = 175°C
1 0.1 1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.0
100
Gfs, Forward Transconductance (S)
TJ = 25°C TJ = 175°C
ID, Drain-to-Source Current(Α)
TJ = 25°C 80
100.0
60
TJ = 175°C
10.0
40
VDS = 15V
1.0 1.0 2.0 3.0 4.0 5.0 6.0
20
≤ 60µs PULSE WIDTH
7.0 8.0 9.0 10.0
VDS = 8.0V
380µs PULSE WIDTH 0 0 10 20 30 40 50 60 70 80 ID, Drain-to-Source Current (A)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance vs. Drain Current
www.irf.com
3
IRLR/U3705ZPbF
5000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd
12
VGS, Gate-to-Source Voltage (V)
ID= 42A VDS = 44V VDS= 28V VDS= 11V
4000
10 8 6 4 2 0
C, Capacitance (pF)
3000
Ciss
2000
1000
Coss Crss
0 1 10 100
0
20
40
60
80
100
VDS , Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
1000.0
10000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA LIMITED BY R DS (on)
ISD , Reverse Drain Current (A)
1000
100.0
TJ = 175°C
100
100µsec 1msec 10msec Tc = 25°C Tj = 175°C Single Pulse 1 10 VDS , Drain-toSource Voltage (V)
10.0
10
TJ = 25°C
1.0
1
VGS = 0V
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.1
DC 100
VSD , Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRLR/U3705ZPbF
100 LIMITED BY PACKAGE 80
ID , Drain Current (A)
RDS(on) , Drain-to-Source On Resistance (Normalized)
2.5
ID = 42A
2.0
VGS = 10V
60
1.5
40
20
1.0
0 25 50 75 100 125 150 175 TC , Case Temperature (°C)
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 10. Normalized On-Resistance vs. Temperature
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.02 0.01
0.01
τJ τJ τ1 τ1 R1 R1 τ2 R2 R2 τC τ τ2
0.1
Ri (°C/W) τi (sec) 0.6984 0.000465 0.4415 0.004358
Ci= τi/Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRLR/U3705ZPbF
EAS, Single Pulse Avalanche Energy (mJ)
15V
500
VDS
L
DRIVER
400
ID 5.3A 7.0A BOTTOM 42A
TOP
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
300
A
0.01Ω
200
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
100
0 25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
I AS
Fig 12b. Unclamped Inductive Waveforms
QG
Fig 12c. Maximum Avalanche Energy vs. Drain Current
10 V
QGS
QGD
VGS(th) Gate threshold Voltage (V)
2.5
ID = 250µA
2.0
VG
ID = 150µA ID = 50µA
Charge
1.5
Fig 13a. Basic Gate Charge Waveform
1.0
L
0
0.5
DUT 1K
VCC
0.0 -75 -50 -25 0 25 50 75 100 125 150 175
TJ , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
Fig 14. Threshold Voltage vs. Temperature
6
www.irf.com
IRLR/U3705ZPbF
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
0.01
10
0.05 0.10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
1
0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
120
EAR , Avalanche Energy (mJ)
100
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 42A
80
60
40
20
0 25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy vs. Temperature
www.irf.com
7
IRLR/U3705ZPbF
Driver Gate Drive
D.U.T
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
RD
VDS VGS RG 10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
D.U.T.
+
-VDD
Fig 18a. Switching Time Test Circuit
VDS 90%
10% VGS
td(on) tr t d(off) tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRLR/U3705ZPbF
D-Pak (TO-252AA) Package Outline
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFR120 WIT H AS S EMBLY LOT CODE 1234 AS S EMBLED ON WW 16, 1999 IN THE AS S EMBLY LINE "A" Note: "P" in ass embly line position indicates "Lead-Free" INT ERNATIONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER
IRFU120 12 916A 34
DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A
OR
INT ERNATIONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER
IRFU120 12 34
DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 16 A = AS S EMBLY S IT E CODE
www.irf.com
9
IRLR/U3705ZPbF
I-Pak (TO-251AA) Package Outline
I-Pak (TO-251AA) Part Marking Information
E XAMPL E : T HIS IS AN IR F U 120 WIT H AS S E MB L Y L OT CODE 5678 AS S E MB L E D ON WW 19, 1999 IN T H E AS S E MB L Y L INE "A" Note: "P" in as s embly line pos ition indicates "L ead-F ree" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R
IR F U 120 919A 56 78
DAT E CODE YE AR 9 = 1999 WE E K 19 L INE A
OR
INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R
IRF U120 56 78
DAT E CODE P = DE S IGNAT E S L E AD-F R E E PR ODU CT (OPT IONAL ) YE AR 9 = 1999 WE E K 19 A = AS S E MB L Y S IT E CODE
10
www.irf.com
IRLR/U3705ZPbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters
TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 16.3 ( .641 ) 15.7 ( .619 )
12.1 ( .476 ) 11.9 ( .469 )
FEED DIRECTION
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481.
Repetitive rating; pulse width limited by
Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.12mH
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 42A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Rθ is measured at TJ approximately 90°C Data and specifications subject to change without notice. This product has been designed for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site.
Notes:
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/04
www.irf.com
11