Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Lead-Free Benefits l Very Low RDS(on) at 4.5V VGS l Ultra-Low Gate Impedance l Fully Characterized Avalanche Voltage and Current
HEXFET Power MOSFET
IRLR8721PbF IRLU8721PbF ®
8.4m:
PD - 96119
VDSS RDS(on) max
30V
D
Qg
8.5nC
S G
S D G
D-Pak I-Pak IRLR8721PbF IRLU8721PbF
G Gate
D Drain
S Source
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C PD @TC = 100°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current
Max.
30 ± 20 65 46
Units
V
f f
A
260 65 33 0.43 -55 to + 175 W W/°C °C
Maximum Power Dissipation Maximum Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range
Thermal Resistance
Parameter
RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB Mount) Junction-to-Ambient
Typ.
Max.
2.3 50 110
Units
°C/W
gÃ
––– ––– –––
Notes through
are on page 11
www.irf.com
1
08/10/07
IRLR/U8721PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Parameter Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
Min. Typ. Max. Units
30 ––– ––– ––– 1.35 ––– ––– ––– ––– ––– 46 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 21 6.3 10.1 1.9 -6.8 ––– ––– ––– ––– ––– 8.5 1.9 1.2 3.4 2.0 4.6 7.9 2.3 8.8 30 9.4 6.5 1030 350 110 ––– –––
Conditions
V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 25A 8.4 11.8 VGS = 4.5V, ID = 20A 2.35 V VDS = VGS, ID = 25µA ––– mV/°C 1.0 150 100 -100 ––– 13 ––– ––– ––– ––– ––– ––– 3.8 ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– pF nC Ω µA nA S
f f
VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 15V, ID = 20A VDS = 15V VGS = 4.5V ID = 20A See Fig. 16 VDS = 16V, VGS = 0V VDD = 15V, VGS = 4.5V ID = 20A
nC
f
ns
RG = 1.8Ω See Fig. 14
VGS = 0V VDS = 15V ƒ = 1.0MHz Max. 93 20 6.5 Units mJ A mJ
Avalanche Characteristics
EAS IAR EAR
Ã
dh
––– ––– ––– ––– ––– ––– ––– ––– 17 24
Diode Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
65
f
Conditions
MOSFET symbol showing the integral reverse
G D
A
Ãh
260 1.0 26 36 V ns nC
S p-n junction diode. TJ = 25°C, IS = 20A, VGS = 0V
TJ = 25°C, IF = 20A, VDD = 15V di/dt = 300A/µs
f
f
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRLR/U8721PbF
1000
TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.7V
1000
TOP VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.7V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
10
10 2.7V
1 2.7V
≤60µs PULSE WIDTH
0.1 0.1 1 Tj = 25°C 1 100 0.1 1 10
≤60µs PULSE WIDTH
Tj = 175°C 10
100
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.0
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current (A)
ID = 25A VGS = 10V
100
T J = 175°C
1.5
10
1
T J = 25°C VDS = 15V ≤60µs PULSE WIDTH
1.0
0.1 0 2 4 6 8 10
0.5 -60 -40 -20 0 20 40 60 80 100 120140160 180 T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
www.irf.com
3
IRLR/U8721PbF
10000
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
5.0 ID= 20A
VGS, Gate-to-Source Voltage (V)
4.0
VDS= 24V VDS= 15V
VDS= 6.0V
C, Capacitance (pF)
1000
Ciss Coss Crss
3.0
2.0
100
1.0
10 1 10 VDS, Drain-to-Source Voltage (V) 100
0.0 0 2 4 6 8 10 QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
1000
1000
OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 1msec
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
T J = 175°C T J = 25°C
100
10
10 10msec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 0 1 10 100
1 VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 VSD, Source-to-Drain Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRLR/U8721PbF
70 60
ID, Drain Current (A)
2.5
VGS(th) , Gate Threshold Voltage (V)
Limited By Package
50 40 30 20 10 0 25 50 75 100 125 150 175 T C , Case Temperature (°C)
2.0
1.5
ID = 25µA
1.0
0.5 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 10. Threshold Voltage vs. Temperature
10
Thermal Response ( Z thJC ) °C/W
1
D = 0.50 0.20 0.10 0.05 0.02 0.01
τJ τJ τ1
0.1
R1 R1 τ2
R2 R2
R3 R3 τ3 τC τ τ3
Ri (°C/W) τi (sec) 0.3501 0.000072 1.1877 0.7635 0.001239 0.010527
τ1
τ2
0.01 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001
Ci= τi /Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1
0.001 1E-006
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRLR/U8721PbF
15V
400
EAS , Single Pulse Avalanche Energy (mJ)
350 300 250 200 150 100 50 0 25 50 75 100
VDS
L
DRIVER
ID 1.1A 1.4A BOTTOM 20A TOP
RG
20V
D.U.T
IAS tp
+ - VDD
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy vs. Drain Current
I AS
RD
Fig 12b. Unclamped Inductive Waveforms
V GS
Current Regulator Same Type as D.U.T.
V DS
RG VGS
D.U.T.
+
-V DD
50KΩ 12V .2µF .3µF
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 14a. Switching Time Test Circuit
D.U.T. + V - DS
VDS 90%
VGS
3mA
IG
ID
10% VGS
td(on) tr t d(off) tf
Current Sampling Resistors
Fig 13. Gate Charge Test Circuit
Fig 14b. Switching Time Waveforms
6
www.irf.com
IRLR/U8721PbF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
• • • • dv/dt controlled by R G Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
V DD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Id Vds Vgs
Vgs(th)
Qgodr
Qgd
Qgs2 Qgs1
Fig 16. Gate Charge Waveform
www.irf.com
7
IRLR/U8721PbF
Power MOSFET Selection for Non-Isolated DC/DC Converters
Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the Rds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; Synchronous FET The power loss equation for Q2 is approximated by;
* Ploss = Pconduction + P + Poutput drive
Ploss = Irms × Rds(on)
+ ( g × Vg × f ) Q
(
2
)
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput
This can be expanded and approximated by;
⎛Q ⎞ + ⎜ oss × Vin × f + (Qrr × Vin × f ) ⎝2 ⎠
*dissipated primarily in Q1.
Ploss = (Irms 2 × Rds(on ) ) ⎛ Qgd +⎜I × × Vin × ig ⎝ + (Qg × Vg × f ) + ⎛ Qoss × Vin × f ⎞ ⎝2 ⎠ ⎞⎛ Qgs 2 ⎞ f⎟ + ⎜ I × × Vin × f ⎟ ig ⎠⎝ ⎠
This simplified loss equation includes the terms Qgs2 and Qoss which are new to Power MOSFET data sheets. Qgs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Qgs1 and Qgs2, can be seen from Fig 16. Qgs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Q gs2 is a critical factor in reducing switching losses in Q1. Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the parallel combination of the voltage dependant (nonlinear) capacitances Cds and Cdg when multiplied by the power supply input buss voltage.
For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Qgs1 must be minimized to reduce the potential for Cdv/dt turn on.
Figure A: Qoss Characteristic
8
www.irf.com
IRLR/U8721PbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSAS XDUCÃ6TT@H7G` GPUÃ8P9@Ã !"# %Ã! ! Q6SUÃIVH7@S DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G@9ÃPIÃXXÃ
DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ6Å
,5)5 $
96U@Ã8P9@ `@6SÃ X@@FÃ GDI@Ã6 Ã2Ã! %
Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqA
rrÅ
6TT@H7G` GPUÃ8P9@
ÅQÅÃvÃhriyÃyvrÃvvÃvqvphr ÅGrhqA
rrÅÃhyvsvphvÃÃurÃpr
yrry
25
Q6SUÃIVH7@S DIU@SI6UDPI6G S@8UDAD@S GPBP 96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃRV6GDAD@9ÃUPÃUC@ 8PITVH@SÃG@W@GÃPQUDPI6G `@6SÃ X@@FÃ Ã2Ã! %
,5)5
6TT@H7G` GPUÃ8P9@
6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRLR/U8721PbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSAV ! XDUCÃ6TT@H7G` GPUÃ8P9@Ã$%&' 6TT@H7G@9ÃPIÃXXÃ (Ã! DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ6Å Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃGrhqA
rrÅ DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
,5)8 $
96U@Ã8P9@ `@6SÃ Ã2Ã! X@@FÃ ( GDI@Ã6
25
DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G` GPUÃ8P9@ Q6SUÃIVH7@S
,5)8
96U@Ã8P9@ QÃ2Ã9@TDBI6U@TÃG@69AS@@ QSP9V8UÃPQUDPI6G `@6SÃ Ã2Ã! X@@FÃ ( 6Ã2Ã6TT@H7G`ÃTDU@Ã8P9@
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRLR/U8721PbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR TRR TRL
16.3 ( .641 ) 15.7 ( .619 )
16.3 ( .641 ) 15.7 ( .619 )
12.1 ( .476 ) 11.9 ( .469 )
FEED DIRECTION
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. Starting TJ = 25°C, L = 0.47mH RG = 25 Ω, IAS = 20A. Pulse width ≤ 400µs; duty cycle ≤ 2%.
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 50A.
When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to application note #AN-994.
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/2007
www.irf.com
11