PD - 95849
AUTOMOTIVE MOSFET
IRLZ44Z IRLZ44ZS IRLZ44ZL
HEXFET® Power MOSFET
D
Features
● ● ● ● ● ●
Logic Level Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax
VDSS = 55V
G S
RDS(on) = 13.5mΩ ID = 51A
Description
Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
TO-220AB IRLZ44Z
D2Pak IRLZ44ZS
Max.
51 36 204 80 0.53 ± 16 78 110 See Fig.12a, 12b, 15, 16 -55 to + 175
TO-262 IRLZ44ZL
Units
A W W/°C V mJ A mJ °C
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS (Thermally limited) EAS (Tested ) IAR EAR TJ TSTG Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V Pulsed Drain Current
Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy
d
Ã
h
g
Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw
Thermal Resistance
RθJC RθCS RθJA RθJA Junction-to-Case
i
300 (1.6mm from case ) 10 lbf in (1.1N m)
y
y
k
Parameter
Typ.
Max.
1.87 ––– 62 40
Units
°C/W
Case-to-Sink, Flat Greased Surface Junction-to-Ambient
ik
ik
––– 0.50 ––– –––
Junction-to-Ambient (PCB Mount)
jk
www.irf.com
1
3/2/04
IRLZ44Z/S/L
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance
Min. Typ. Max. Units
55 ––– ––– ––– ––– 1.0 27 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.05 11 ––– ––– ––– ––– ––– ––– ––– ––– 24 7.5 12 14 160 25 42 4.5 7.5 1620 230 130 860 180 280 ––– ––– 13.5 20 22.5 3.0 ––– 20 250 200 -200 36 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– V V/°C mΩ mΩ mΩ V V µA nA
Conditions
VGS = 0V, ID = 250µA Reference to 25°C, ID = 1mA VGS = 10V, ID = 31A VGS = 5.0V, ID = 30A VGS = 4.5V, ID = 15A VDS = VGS, ID = 250µA VDS = 25V, ID = 31A VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125°C VGS = 16V VGS = -16V ID = 31A VDS = 44V VGS = 5.0V VDD = 50V ID = 31A RG = 7.5 Ω VGS = 5.0V D Between lead,
VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff.
e e e
Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance
nC
e e
ns
nH
6mm (0.25in.) from package
G
pF
S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 44V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 44V
f
Source-Drain Ratings and Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– 21 16 51 A 204 1.3 32 24 V ns nC
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 31A, VGS = 0V TJ = 25°C, IF = 31A, VDD = 28V di/dt = 100A/µs
Ã
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRLZ44Z/S/L
1000
TOP VGS 15V 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V
1000
TOP VGS 15V 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V
100
BOTTOM
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
100
BOTTOM
10
10
1
3.0V ≤ 60µs PULSE WIDTH Tj = 25°C
3.0V ≤ 60µs PULSE WIDTH Tj = 175°C
0.1 0.1 1 10 100
1 0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.0
60
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
T J = 175°C
T J = 25°C T J = 175°C
100.0
40 T J = 25°C 20
10.0
VDS = 20V ≤ 60µs PULSE WIDTH
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
VDS = 10V 380µs PULSE WIDTH 0 0 10 20 30 40 50 ID, Drain-to-Source Current (A)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance Vs. Drain Current
www.irf.com
3
IRLZ44Z/S/L
2500 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
12
VGS, Gate-to-Source Voltage (V)
ID= 31A VDS= 44V VDS= 28V VDS= 11V
2000
10 8 6 4 2 0
C, Capacitance (pF)
Ciss
1500
1000
500
Coss Crss
0 1 10 100
0
10
20
30
40
50
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000.0
1000 OPERATION IN THIS AREA LIMITED BY R DS(on)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100.0 T J = 175°C
100
100µsec 10
10.0 T J = 25°C 1.0 VGS = 0V 0.1 0.2 0.6 1.0 1.4 1.8 VSD, Source-to-Drain Voltage (V)
1msec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 10 100 1000 VDS , Drain-toSource Voltage (V) 10msec
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRLZ44Z/S/L
60 2.5
RDS(on) , Drain-to-Source On Resistance (Normalized)
50
ID = 30A VGS = 5.0V
2.0
ID , Drain Current (A)
40
30
1.5
20
1.0
10
0 25 50 75 100 125 150 175
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
T J , Junction Temperature (°C)
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10. Normalized On-Resistance Vs. Temperature
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10
0.1
0.05 0.02 0.01
τJ
R1 R1 τJ τ1 τ2
R2 R2
R3 R3 τ3 τC τ τ3
Ri (°C/W) τi (sec) 0.736 0.000345 0.687 0.449 0.00147 0.007058
τ1
τ2
0.01
Ci= τi/Ri Ci τi/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRLZ44Z/S/L
320
EAS, Single Pulse Avalanche Energy (mJ)
15V
VDS
L
DRIVER
240
ID 3.7A 5.7A BOTTOM 31A
TOP
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
160
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
80
0 25 50 75 100 125 150 175
Starting T J, Junction Temperature (°C)
I AS
Fig 12b. Unclamped Inductive Waveforms
QG
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
10 V
QGS VG QGD
VGS(th) Gate threshold Voltage (V)
3.0
2.5
Charge
2.0
ID = 250µA
Fig 13a. Basic Gate Charge Waveform
1.5
1.0
L VCC
0
DUT 1K
0.5 -75 -50 -25 0 25 50 75 100 125 150 175
T J , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
Fig 14. Threshold Voltage Vs. Temperature
6
www.irf.com
IRLZ44Z/S/L
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
0.01
10
0.05 0.10
1
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
100
EAR , Avalanche Energy (mJ)
80
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 31A
60
40
20
0 25 50 75 100 125 150
Starting T J , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy Vs. Temperature
www.irf.com
7
IRLZ44Z/S/L
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
• • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Curent Inductor Current
Ripple ≤ 5% ISD
* VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs
VDS VGS RG 10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
RD
D.U.T.
+
-VDD
Fig 18a. Switching Time Test Circuit
VDS 90%
10% VGS
td(on) tr t d(off) tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRLZ44Z/S/L
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN
14.09 (.555) 13.47 (.530)
4.06 (.160) 3.55 (.140)
3X 1.40 (.055) 3X 1.15 (.045) 2.54 (.100) 2X NOTES:
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.92 (.115) 2.64 (.104)
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER
DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C
For GB Production
EXAMPLE: THIS IS AN IRF1010 L OT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INTERNATIONAL RECT IFIER LOGO LOT CODE PART NUMBER
DAT E CODE
www.irf.com
9
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
IRLZ44Z/S/L
D2Pak Part Marking Information
T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L
PART NUMBER F530S DAT E CODE
For GB Production
T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO LOT CODE
10
www.irf.com
IRLZ44Z/S/L
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
IGBT 1- GATE 2- COLLECTOR
TO-262 Part Marking Information
EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 AS SEMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INT ERNAT IONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER
DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C
www.irf.com
11
IRLZ44Z/S/L
D2Pak Tape & Reel Information
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. Limited by TJmax, starting TJ = 25°C, L = 0.166mH This value determined from sample failure population. 100% RG = 25Ω, IAS = 31A, VGS =10V. Part not tested to this value in production. recommended for use above this value. This is only applied to TO-220AB pakcage. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. This is applied to D2Pak, when mounted on 1" square PCB (FR Coss eff. is a fixed capacitance that gives the 4 or G-10 Material). For recommended footprint and soldering same charging time as Coss while VDS is rising techniques refer to application note #AN-994. from 0 to 80% VDSS . Rθ is measured at TJ approximately 90°C Repetitive rating; pulse width limited by
TO-220AB package is not recommended for Surface Mount Application.
Notes:
Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 3/04
12
www.irf.com