Data Sheet No. PD60263
IRS2103(S)PbF
HALF-BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt • • • • • • • •
immune Gate drive supply range from 10 V to 20 V Undervoltage lockout 3.3 V, 5 V, and 15 V logic compatible Cross-conduction prevention logic Matched propagation delay for both channels Internal set deadtime High side output in phase with HIN input Low side output out of phase with LIN input
Product Summary
VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600 V max. 130 mA/270 mA 10 V - 20 V 680 ns/150 ns 520 ns
Packages
Description
The IRS2103 is a high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC 8-Lead SOIC 8-Lead PDIP and latch immune CMOS technologies enable ruggeIRS2103S IRS2103 dized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver crossconduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V.
Typical Connection
up to 600 V VCC
VCC
HIN LIN
VB HO VS LO
TO LOAD
HIN LIN COM
(Refer to Lead Assignments for correct configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IRS2103(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB VS VHO VCC VLO VIN dVs/dt PD RthJA TJ TS TL
Definition
High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (HIN & LIN ) Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 Lead PDIP) (8 Lead SOIC) (8 Lead PDIP) (8 Lead SOIC)
Min.
-0.3 V B - 25 VS - 0.3 -0.3 -0.3 -0.3 — — — — — — -55 —
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300
Units
V
V/ns W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at a 15 V differential.
Symbol
VB VS VHO VCC VLO VIN TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (HIN & LIN ) Ambient temperature
Min.
VS + 10 Note 1 VS 10 0 0 -40
Max.
VS + 20 600 VB 20 VCC VCC 125
Units
V
°C
Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
www.irf.com
2
IRS2103(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, CL = 1000 pF and TA = 25 °C unless otherwise specified.
Symbol
ton toff tr tf DT MT
Definition
Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off Delay matching, HS & LS turn-on/off
Min. Typ. Max. Units Test Conditions
— — — — 400 — 680 150 70 35 520 — 820 220 170 90 650 60 ns VS = 0 V VS = 600 V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VCCUVIO+ IO-
Definition
Logic “1” (HIN) & Logic “0” ( LIN ) input voltage Logic “0” (HIN) & Logic “1” ( LIN ) input voltage High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current Output low short circuit pulsed current
Min. Typ. Max. Units Test Conditions
2.5 — — — — — — — — 8 7.4 130 270 — — 0.05 0.02 — 30 150 3 — 8.9 8.2 290 600 — 0.8 0.2 0.1 50 55 270 10 1 9.8 V 9 — mA — VO = 0 V, VIN = VIH PW ≤ 10 µs VO = 15 V, VIN = VIL PW ≤ 10 µs µA VIN = 0 V or 5 V HIN = 5 V, LIN = 0 V HIN = 0 V, LIN = 5 V V IO = 2 mA VB = VS = 600 V VCC = 10 V to 20 V
www.irf.com
3
IRS2103(S)PbF
Functional Block Diagram
VB
HV LEVEL SHIFT PULSE FILTER
Q R S VS HO
IHN PULSE GEN
DEAD TIME & SHOOT-THROUGH PREVENTION VCC
UV DETECT VCC
LIN
LO
COM
Lead Definitions
Symbol Description
HIN LIN VB HO VS VCC LO COM Logic input for high side gate driver output (HO), in phase Logic input for low side gate driver output (LO), out of phase High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return
Lead Assignments
1 2 3 4
VCC HIN LIN COM
VB HO VS LO
8
7 6 5
1 2 3 4
VCC HIN LIN COM
VB HO VS LO
8
7 6 5
8 Lead PDIP
8 Lead SOIC
IRS2103PbF
www.irf.com
IRS2103SPbF
4
IRS2103(S)PbF
HIN
LIN
50% 50%
LIN
ton
tr 90%
toff 90%
tf
HO
LO
LO
10%
10%
Figure 1. Input/Output Timing Diagram
50%
50%
HIN
ton tr 90% toff 90% tf
HO
HIN LIN
50% 50%
10%
10%
Figure 2. Switching Time Waveform Definitions
90%
HO
DT
10% DT
LO
90%
10%
Figure 3. Deadtime Waveform Definitions
www.irf.com
5
IRS2103(S)PbF
1400
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
1400 1200 1000 800 600 400 200 0 Typ. Max.
1200 1000 Max. 800 600 400 200 0 -50 Typ.
-25
0
25 50 75 Temperature (oC)
100
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 4A. Turn-On Time vs. Temperature
Figure 4B. Turn-On Time vs. Supply Voltage
1000
500
Turn-On Delay Time (ns)
Max . 800 600 Typ. 400 200 0 0 2 4 6 8 10 12 14 16 18 20
Turn-Off Delay Time (ns)
400 300 200 100 Typ. 0 -50 Max.
-25
0
25
50
75
100
125
Temperature (oC)
Input Voltage (V)
Figure 4C. Turn-On Time vs. Input Voltage
Figure 5A. Turn-Off Time vs. Temperature
500
Turn-Off Delay Time (ns) Turn-Off Delay Time(ns)
1000 800 600
M. ax
Turn-Off Delay Time (ns)
400 300 200 100 0 10 12 14 16 18 20 Typ. Max.
400 200 0 0 2 4 6 8 10 12 14 16 18
Typ.
VBIAS Supply Voltage (V)
Input Voltage(V)
Figure 5B. Turn-Off Time vs. Supply Voltage
www.irf.com
Figure 5C. Turn-Off Time vs. Input Voltage
6
IRS2103(S)PbF
500
Turn-On Rise Time (ns)
500
Turn-On Rise Time (ns)
400 300 200 100 0 -50
Typ.
400 300
Max.
Max.
200 100
Max.
Typ. Typ. 0 10 10 12 12 14 14 16 16 18 18 20 20
-25
0
25
50
o
75
100
125
Temperature ( C)
VBIAS Supply Voltage (V)
Figure 6A. Turn-On Rise Time vs. Temperature
200
Turn-Off Fall Time (ns)
Figure 6B. Turn-On Rise Time vs. Voltage
200
Turn-Off Fall Time (ns)
150 100
Max.
150
Max.
100 50
Typ.
50
Typ.
0 -50 -25 0 25 50
o
75
100
125
0 10 12 14 16 18 20 Input Voltage (V)
Temperature ( C)
Figure 7A. Turn-Off Fall Time vs. Temperature
1400 1200
Figure 7B. Turn-Off Fall Time vs. Voltage
1400 1200
Deadtime (ns)
Deadtime (ns)
1000 800 600 Ty p. 400 200 Min. Max.
1000 800 600 400
Max. Typ.
Min. 200 0
0 -50
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature (oC)
VBIAS Supply Voltage (V)
Figure 8A. Deadtime vs. Temperature
Figure 8B. Deadtime vs. Voltage
www.irf.com
7
IRS2103(S)PbF
5
IInput Vloltag(e ) V) nput Vo tage V (
5 4 3 2 1 -25 0 25 50 75 100 125 10 12 14 16 18 20
Temperature (oC)
Input Voltage (V)
4 3
Mi n.
Mi n.
2 1 -50
VBAIS Supply Voltage (V)
Figure 9A. Logic "1" Input Voltage vs. Temperature
4 3.2 2.4 1.6 Max. 0.8 0 -50
Figure 9B. Logic "1" Input Voltage vs. Supply Voltage
4 3.2 2.4 1.6 Max. 0.8 0
Input Voltage (V)
-25
0
25
50
75
100
125
Input Voltage (V)
10
12
Temperature (oC)
14 16 Vcc Supply Voltage (V)
18
20
Figure 10A. Logic "0"(HIN) & Logic "1" (LIN ) Input Voltage vs. Temperature
0.5
Figure 10B. Logic "0"(HIN) & Logic "1" ( LIN ) Input Voltage vs. Voltage
0.5 0.4 0.3 0.2 0.1 0.0 10 12 14 16 18 20
VBIAS Supply Voltage (V)
Typ.
High Level Output Voltage (V)
0.4
0.3
High Level Output Voltage (V)
Max.
0.2
Max.
0.1
Typ.
0.0 -50 -25 0 25 50 75 100 125
Temperature ( oC)
Figure 11A. High Level Output Voltage vs. Temperature www.irf.com
Figure 11B. High Level Output Voltage vs. Supply Voltage 8
PDF created with pdfFactory trial version www.pdffactory.com
IRS2103(S)PbF
0.5
Low Level Output Voltage (V) Low Level Output Voltage (V)
0.5 0.4 0.3 0.2
Max.
0.4 0.3 0.2 0.1 0.0 -50 -25 0 25 50
o
Max. Typ.
0.1
Typ.
0
75 100 125
10
12
14
16
18
20
Temperature ( C)
V BIAS Supply Voltage (V)
Figure 12A. Low Level Output Voltage vs. Temperature
Offset Supply Leakge Current (µA)
500 400 300 200 100
Figure 12B. Low Level Output Voltage vs. Supply Voltage
Offset Supply Leakge Current (µA)
500 400 300 200 100 0 0 200 400 600 800
VB Boost Voltage (V)
Max.
Max.
0 -50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 13A. Offset Supply Current vs. Temperature
150
Figure 13B. Offset Supply Current vs. Voltage
150
VBS Supply Current (µA)
120 90 60 Max. 30 Typ. 0 -50
VBS Supply Current (µA)
120 90 60 30 Ty p. 0
Max.
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature (oC)
VBS Floating Supply Voltage (V)
Figure 14A. VBS Supply Current vs. Temperature www.irf.com
Figure 14B. VBS Supply Current vs. Voltage
9
IRS2103(S)PbF
700
VCC Supply Current (µA)
700
600 500 400 300 200 100
Typ.
VCC Supply Current (µA)
600 500 400 300 200 100 0
Typ.
Max.
Max.
0 -50
-25
0
25 50 Temperature (oC)
75
100
125
10
12
14
16
18
20
Vcc Supply Voltage (V)
Figure 15A. Vcc Supply Current vs. Temperature
30
Figure 15B. Vcc Supply Current vs. Voltage
30
Logic “1” Input Current (µA)
Logic “1” Input Current (µA)
25 20 15 Max. 10
Max
25 20 15 Max. 10 5 0 Typ.
5 Typ. 0 -50 -25 0 25 50 75 100 125
10
12
14
16
18
20
Temperature (oC)
Vcc Supply Voltage (V)
Figure 16A. Logic "1" Input Current vs. Temperature
5
Logic “0” Input Current (µA)
Figure 16B. Logic "1" Input Current vs. Voltage
5 4 3 2 Max. 1 0
4 3 2 Max. 1 0 -50
-25
0
25
50
75
100
125
Logic “0” Input Current (µA)
10
12
Temperature (oC)
14 16 Vcc Supply Voltage (V)
18
20
Figure 17A. Logic "0" Input Current vs. Temperature www.irf.com
Figure 17B. Logic "0" Input Current vs. Voltage 10
IRS2103(S)PbF
11
VCC UVLO Threshold +(V)
11
VCC UVLO Threshold -(V)
Max. 10 Typ. Typ. 9 Min. 8 7 6 -50
10
Max.
9
Typ. Typ.
8 7 Min. 6 -50
-25
0
25
50
75
100
125
-25
0
25
50
75
100
125
Temperature (oC)
Temperature (oC)
Figure 18A. Vcc Undervoltage Threshold(+) vs. Temperature
500
Output Source Current (mA)
Figure 18B. Vcc UndervoltageThreshold (-) vs. Temperature
500
Output Source Current (mA)
400 300 200 100 0 -50 -25 0 25 50
o
400 300 200
Typ.
Typ.
Min.
100
Min.
0
75 100 125
10
12
14
16
18
20
Temperature ( C)
V BIAS Supply Voltage (V)
Figure 19A. Output Source Current vs. Temperature
1000
Output Sink Current (mA) Output Sink Current (mA)
Figure 19B. Output Source Current vs. Supply Voltage
1000
800 600 400 200 0
Typ.
800 600 400
Typ.
Min.
200
Min.
0
-50
-25
0
25
50
o
75
100
125
10
12
14
16
18
20
Temperature ( C)
VBIAS Supply Voltage (V)
Figure 20A. Output Sink Current vs. Temperature www.irf.com
Figure 20B. Output Sink Current vs. Supply Voltage 11
IRS2103(S)PbF
Case Outlines
8-Lead PDIP
01-6014 01-3003 01 (MS-001AB)
D A 5
B
FOOTPRINT 8X 0.72 [.028]
DIM A b c D
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574
MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
E
6.46 [.255]
1
2
3
4
e e1 H K L
8X 1.78 [.070]
.050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e e1
3X 1.27 [.050]
y
A C 0.10 [.004] y
K x 45°
8X b 0.25 [.010]
NOTES:
A1 CAB
8X L 7
8X c
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8-Lead SOIC
www.irf.com
01-6027 01-0021 11 (MS-012AA)
12
IRS2103(S)PbF
Tape & Reel 8-lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D F C
N OT E : CO NTROLLING D IM ENSION IN MM
E G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 11 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5.5 5 0. 21 4 0 .2 18 E 6 .3 0 6.5 0 0. 24 8 0 .2 55 F 5 .1 0 5.3 0 0. 20 0 0 .2 08 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62
F
D C E B A
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 14 .5 0 1 7. 10 0. 57 0 0 .6 73 H 12 .4 0 1 4. 40 0. 48 8 0 .5 66
www.irf.com
13
IRS2103(S)PbF
LEADFREE PART MARKING INFORMATION
Part number
S IRxxxxxx
Date code
YWW? ?XXXX
IR logo
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Lot Code (Prod mode - 4 digit SPN code)
Assembly site code Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2103PbF 8-Lead SOIC IRS2103SPbF 8-Lead SOIC Tape & Reel IRS2103STRPbF
The SOIC-8 is MSL2 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 6/14/2006
www.irf.com
14
很抱歉,暂时无法提供与“IRS2103SPBF”相匹配的价格&库存,您可以联系我们找货
免费人工找货