PRELIMINARY
Data Sheet No. PD60246 revB
IRS2106/IRS21064(S)PbF
HIGH AND LOW SIDE DRIVER
Features Packages • Floating channel designed for bootstrap operation • Fully operational to +600 V 8-Lead SOIC • Tolerant to negative transient voltage, dV/dt immune • Gate drive supply range from 10 V to 20 V • Undervoltage lockout for both channels • 3.3 V, 5 V, and 15 V input logic compatible • Matched propagation delay for both channels • Logic and power ground +/- 5 V offset. • Lower di/dt gate driver for better noise immunity • Outputs in phase with inputs (IRS2106)
14-Lead SOIC
14-Lead PDIP
8-Lead PDIP
Description
The IRS2106/IRS21064 are high Crossvoltage, high speed power MOSFET Input conduction Dead-Time Ground Pins Ton/Toff Part and IGBT drivers with independent prevention logic logic high and low side referenced output 2106/2301 COM 220/200 HIN/LIN no none channels. Proprietary HVIC and 21064 VSS/COM latch immune CMOS technologies 2108 Internal 540ns COM HIN/LIN yes 220/200 Programmable 0.54~5 µs 21084 VSS/COM enable ruggedized monolithic con2109/2302 Internal 540ns COM struction. The logic input is IN/SD yes 750/200 Programmable 0.54~5 µs 21094 VSS/COM compatible with standard CMOS or yes 160/140 Internal 100ns HIN/LIN COM 2304 LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V.
Feature Comparison
Typical Connection
VCC
up to 600 V
V CC
HIN LIN
VB HO VS LO
TO LOAD
HIN LIN COM
IRS2106
HO V CC
HIN
up to 600 V
V CC HIN LIN
VB VS TO LOAD
(Refer to Lead Assignments for correct pin configuration). These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
LIN
IRS21064
COM LO
V SS
V SS
www.irf.com
1
IRS2106/IRS21064(S)PbF
PRELIMINARY
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB VS VHO VCC VLO VIN VSS dVS/dt
Definition
High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Logic ground (IRS21064 only) Allowable offset supply voltage transient (8 lead PDIP)
Min.
-0.3 V B - 25 VS - 0.3 -0.3 -0.3 VSS - 0.3 VCC - 25 — — — — — — — — — — -50 —
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.0 0.625 1.6 1.0 125 200 75 120 150 150 300
Units
V
V/ns
PD
Package power dissipation @ TA ≤ +25 °C
(8 lead SOIC) (14 lead PDIP) (14 lead SOIC) (8 lead PDIP) (8 lead SOIC) (14 lead PDIP) (14 lead SOIC)
W
RthJA
Thermal resistance, junction to ambient
°C/W
TJ TS TL
Junction temperature Storage temperature Lead temperature (soldering, 10 seconds)
°C
www.irf.com
2
IRS2106/IRS21064(S)PbF
PRELIMINARY
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential.
Symbol
VB VS VHO VCC VLO VIN VSS TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Logic ground (IRS21064 only) Ambient temperature
Min.
VS + 10 Note 1 VS 10 0 VSS -5 -40
Max.
VS + 20 600 VB 20 VCC VCC 5 125
Units
V
°C
Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C.
Symbol
ton toff MT tr tf
Definition
Turn-on propagation delay Turn-off propagation delay Delay matching, HS & LS turn-on/off Turn-on rise time Turn-off fall time
Min.
— — — — —
Typ.
220 200 0 100 35
Max. Units Test Conditions
300 280 30 220 80 ns VS = 0 V VS = 0 V VS = 0 V or 600 V
www.irf.com
3
IRS2106/IRS21064(S)PbF
PRELIMINARY
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO-
Definition
Logic “1” input voltage Logic “0” input voltage High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current VIN = 5 V Logic “0” input bias current VIN = 0 V VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current
Min. Typ. Max. Units Test Conditions
2.5 — — — — 20 60 — — 8.0 7.4 0.3 130 270 — — 0.05 0.02 — 75 120 5 — 8.9 8.2 0.7 290 600 — 0.8 0.2 0.1 50 130 180 20 2 9.8 9.0 — — mA — VO = 0 V, PW ≤ 10 µs VO = 15 V, PW ≤ 10 µs V µA V IO = 2 mA VB = VS = 600 V VIN = 0 V or 5 V VCC = 10 V to 20 V
www.irf.com
4
IRS2106/IRS21064(S)PbF
PRELIMINARY
Functional Block Diagrams
VB
IRS2106
HV LEVEL SHIFTER PULSE GENERATOR
UV DETECT R PULSE FILTER R S Q
HO
HIN
VSS/COM LEVEL SHIFT
VS
VCC
UV DETECT
LO
LIN
VSS/COM LEVEL SHIFT
DELAY
COM
VB
IRS21064
HV LEVEL SHIFTER PULSE GENERATOR
UV DETECT R PULSE FILTER R S Q
HO
HIN
VSS/COM LEVEL SHIFT
VS
VCC
UV DETECT
LO
LIN
VSS/COM LEVEL SHIFT
DELAY
COM
VSS
www.irf.com
5
IRS2106/IRS21064(S)PbF
PRELIMINARY
Lead Definitions
Symbol Description
HIN LIN VSS VB HO VS VCC LO COM Logic input for high side gate driver output (HO), in phase Logic input for low side gate driver output (LO), in phase Logic ground (IRS21064 only) High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return
Lead Assignments
1 2 3 4
VCC HIN LIN COM
VB HO VS LO
8
7 6 5
1 2 3 4
VCC HIN LIN COM
VB HO VS LO
8
7 6 5
8 Lead PDIP
8 Lead SOIC
IRS2106PbF
IRS2106SPbF
1 2 3 4 5 6 7
VCC HIN LIN VB HO VS VSS COM LO
14
13 12 11 10 9 8
1 2 3 4 5 6 7
VCC HIN LIN VB HO VS VSS COM LO
14
13 12 11 10 9 8
14 Lead PDIP
14 Lead SOIC
IRS21064PbF
www.irf.com
IRS21064SPbF
6
IRS2106/IRS21064(S)PbF
PRELIMINARY
HIN LIN
HO LO
Figure 1. Input/Output Timing Diagram
HIN LIN
ton
50%
50%
tr 90%
toff 90%
tf
HO LO
10%
10%
Figure 2. Switching Time Waveform Definitions
HIN LIN
50%
50%
LO
HO
10%
MT 90%
MT
LO
HO
Figure 3. Delay Matching Waveform Definitions
www.irf.com
7
IRS2106/IRS21064(S)PbF
PRELIMINARY
500
500
Turn- O n Propagation Delay (ns)
400
Turn-On Propagation Delay (ns)
400 M ax. 300
300 M ax 200 Typ. 100
Typ.
200
100
0 -50 -25 0 25 50 75 100 125
0 10 12 14 16 18 20
Temperature ( oC)
Figure 4A. Turn-On Propagation Delay vs. Temperature
V BIAS Supply Voltage (V)
Figure 4B. Turn-On Propagation Delay vs. Supply Voltage
500
500
Turn-Off Propagation Delay (ns)
400
Turn-Off Propagation Delay (ns)
400 M ax. 300 Typ. 200
300 M ax. 200 Typ. 100
100
0 -50 -25 0 25 50 75 100 125
0 10 12 14 16 18 20
Temperature (oC)
Figure 5A. Turn-Off Propagation Delay vs. Temperature
V BIAS Supply Voltage (V)
Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage
www.irf.com
8
IRS2106/IRS21064(S)PbF
PRELIMINARY
500 T ur n- O n R is e T im e ( n s ) 400 300 200
Max.
500 T ur n - O n R is e T im e ( n s ) 400 300
Max.
200 100 0
100
Typ.
Typ.
0 -50
-25
0
25
50 ( oC)
75
100
125
10
12
14
16
18
20
Temperature
V BIAS Supply Voltage (V)
Figure 6B. Turn-On Rise Time vs. Supply Voltage
Figure 6A. Turn-On Rise Time vs. Temperature
200 T ur n- O ff F all T im e 150 100
Max.
200 T ur n- O ff F all T im e 150 100
Max.
50
T yp.
50
Typ.
0 -50
0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC)
Figure 7A. Turn-Off Fall Time vs. Temperature
Input Voltage (V)
Figure 7B. Turn-Off Fall Time vs. Supply Voltage
www.irf.com
9
PDF created with pdfFactory trial version www.pdffactory.com
IRS2106/IRS21064(S)PbF
PRELIMINARY
8 7 In p u t V o lt a g e ( V ) I n p u t Vo lta g e ( V ) 6 5 4 3 2 1 0 -50 -25 0 25 50 (oC) 75 100 125
Mi n.
8 7 6 5 4 3 2 1 0 10 12 14 16 18 20 Temperature
Mi n.
VBAIS Supply Voltage (V)
Figure 8B. Logic “1” Input Voltage vs. Supply Voltage
Figure 8A. Logic “1” Input Voltage vs. Temperature
4.0
4.0
3.2
3.2
Input Voltage (V )
2.4
Input Voltage (V )
2.4
1.6 M in. 0.8
1.6 M in. 0.8
0.0 -50 -25 0 25 50 75 100 125
0.0 10 12 14 16 18 20
Temperature (oC)
Figure 9A. Logic "0"“0” Input Voltage Input Voltage Figure 9A. Logic
vs. Temperature
VCC Supply Voltage (V)
Figure 9B. Logic “0” Input Voltage vs. Supply Voltage
www.irf.com
10
PDF created with pdfFactory trial version www.pdffactory.com
IRS2106/IRS21064(S)PbF
PRELIMINARY
High Level Output Voltage (V) High Level O utput Voltage (V)
High Level Output Voltage (V) High Level O utput Voltage (V)
0.5 0.4 0.3 0.2 0.1
Typ.
0.5 0.4 0.3 0.2 0.1
Typ. Max.
Max.
0.0 -50
0.0 10 12 14 16 18 20 V BAIS Supply Voltage (V)
Figure 10B. High Level Output Voltage vs. Supply Voltage
-25
0
25
50
75
100
125
Temperature (oC)
Figure 10A. High Level Output Voltage vs. Temperature
Low Level Output Voltage (V) Low Level O utput Voltage (V)
Low Level Output Low Level O utput Voltage (V) (V)
0.5 0.4 0.3 0.2 0.1
Max. Typ.
0.5 0.4 0.3 0.2
Max.
0.1
Typ.
0.0 -50
0 10 12 14 16 18 20 V BIAS Supply Voltage (V)
Figure 11B. Low Level Output Voltage vs. Supply Voltage
-25
0
25
50
75
100
125
Temperature (oC)
Figure 11A. Low Level Output Voltage vs. Temperature
www.irf.com
11
IRS2106/IRS21064(S)PbF
PRELIMINARY
400
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
500
500
400
300
300
200
200
100 M ax. 0 50 25 0 25 50 75 100 125
100 M ax.
0 0 100 200 300 400 500 600
Temperature ( oC)
Figure 12A. Offset Supply Leakage Current vs. Temperature
V B Boost Voltage (V)
Figure 12B. Offset Supply Leakage Current vs. Supply Voltage
400
400
V BS Supply Current (µA)
V BS Supply Current (µA)
0 25 50
o
300
300
200
200
M ax. 100 Typ. Mi n. 0 50 25 75 100 125
M ax. 100 Typ. Mi n. 0 10 12 14 16 18 20
Temperature ( C)
Figure 13A. VBS Supply Current vs. Temperature
V BS Supply Voltage (V)
Figure 13B. VBS Supply Current vs. Supply Voltage
www.irf.com
12
IRS2106/IRS21064(S)PbF
PRELIMINARY
400
400
V c c S u p p ly C urrent ( µ A )
300
V CC Supply Current (µA)
300 M ax. 200 Typ.
200
M ax. Typ.
100 Mi n.
100
Mi n.
0 -0 5 25 0 25 50 75 100 125
0 10 12 14 16 18 20
Te m p e ra t u re ( o C )
Figure 14A. Quiescent V CC Supply Current vs. Temperature
V CC Supply Voltage (V)
Figure 14B. Quiescent VCC Supply Current vs. VCC Supply Voltage
60
60
Logic "1" Input Current ( µ A)
50
Logic "1" Input Current ( µ A)
50
40
40
30
30 M ax. 20
20 M ax. Typ. 0 50 25 0 25 50 75 100 125
10
10 Typ. 0 10 12 14 16 18 20
Temperature (oC)
Figure 15A. Logic “1” Input Current vs. Temperature
V CC Supply Voltage (V)
Figure 15B. Logic “1” Bias Current vs. Supply Voltage
www.irf.com
13
IRS2106/IRS21064(S)PbF
PRELIMINARY
5
5
Logic "0" Input Current ( µ A )
Logic "0" Input Current ( µ A )
4
4
3 M ax. 2
3 M ax. 2
1
1
0 50 25 0 25 50 75 100 125
0 10 12 14 16 18 20
Temperature ( oC)
Figure 16A. Logic “0” Input Current vs. Temperature
V CC Supply Voltage (V)
Figure 16B. Logic “0” Input Currentt vs. Supply Voltage
12
11
V CC UVLO Threshold (+) (V)
11
V CC UVLO Threshold (-) (V)
10 M ax. 9 Typ. 8 Mi n. 7
10
M ax.
9
Typ.
Mi n. 8
7 50 25 0 25 50 75 100 125
6 50 25 0 25 50
o
75
100
125
Temperature ( oC)
Figure 17. VCC Undervoltage Threshold (+) vs. Temperature
Temperature ( C)
Figure 18. VCC Undervoltage Threshold (-) vs. Temperature
www.irf.com
14
IRS2106/IRS21064(S)PbF
PRELIMINARY
12
11
V BS UVLO Threshold (+) (V)
V BS UVLO Threshold (-) (V)
11
10
10
M ax.
9
M ax.
Typ. 9 Mi n. 8
Typ. 8 Mi n. 7
7 50 25 0 25 50
o
6 75 100 125 50 25 0 25 50 75 100 125
Temperature ( C)
Figure 19. VBS Undervoltage Threshold (+) vs. Temperature
Temperature ( oC)
Figure 20. VBS Undervoltage Threshold (-) vs. Temperature
Output Source Current (mA)
400
Typ.
Output Source Current(mA)
500
500 400 300 200
Typ.
300 200 100 0 -50 -25 0 25 50 75 100 125 Te m p e ra t u re ( o C)
Figure 21A. Output Source Current vs. Temperature
Max.
100
Max.
0 10 12 14 16 18 20
V BIAS S u p p l y V o l t a g e ( V )
Figure 21B. Output Source Current vs. Supply Voltage
www.irf.com
15
IRS2106/IRS21064(S)PbF
PRELIMINARY
1000 Output Sink Current (mA) 800
Typ.
1000 Output Sink Current (mA) 800 600 400
Typ.
600 400
Max.
200 0 -50 -25 0 25 50 75 100 125 Te m p e ra t u re ( o C)
Figure 22A. Output Sink Current vs. Temperature
200
Max.
0 10 12 14 16 18 20
V BIASS u p p l y V o l t a g e ( V )
Figure 22B. Output Sink Currentt vs. Supply Voltage
0
140 120 Temprature (oC)
Typ.
V S Offset Supply Voltage (V)
2
100 80 60 40 20
140V 70V 0V
4
6
8
10 10 12 14 16 18 20
1
10
100
1000
V BS Floating Supply Voltage (V)
Figure 23. Maximum VS Negative Offset vs. Supply Voltage
Frequency (kHz)
Figure 24. IRS2106 vs. Frequency (IRFBC20), Rgate=33 Ω, VCC=15 V
www.irf.com
16
IRS2106/IRS21064(S)PbF
PRELIMINARY
1 40
140 120 Temperature (oC) 100
140V
1 20
Temperature (oC)
1 00
140V
80
70V
80 60 40
70V 0V
60
0V
40
20
20 1 1 0 1 00 1 000
1
Frequency (kHz)
10
100
1000
Frequency (kHz) Figure 26. IRS2106 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
Figure 25. IRS2106 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V
140 120 Temperature (oC) 100 80 60 40 20 1 10 100
140V 70V
140
0V
120 Temperature (oC) 100 80 60 40
0V 140V 70V
20 1000 1 10 100 1000 Frequency (kHz) Frequency (kHz) Figure 28. IRS21064 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V
Figure 27. IRS2106 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
www.irf.com
17
IRS2106/IRS21064(S)PbF
PRELIMINARY
140 120 Temperature (oC) Temperature (oC) 100 80
140V
140 120 100
140V
80 60 40 20
70V 0V
60 40 20 1 10 100
70V 0V
1000
1
10
100
1000
Frequency (kHz) Figure 29. IRS21064 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V
Frequency (kHz) Figure 30. IRS21064 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
140 120 Temperature (oC)
140V
140 120 Temperature (oC) 100 80 60 40 20
140V
70V
100 80 60 40 20 1 10 100
0V
70V 0V
1000
1
10
100
1000
Frequency (kHz) Figure 31. IRS21064 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
Frequency (kHz) Figure 32. IRS2106S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V
www.irf.com
18
IRS2106/IRS21064(S)PbF
PRELIMINARY
140 120
140V
140 120 Temperature (oC)
140V 70V
Temperature (oC)
0V
100 80 60 40 20 1 10 100
70V 0V
100 80 60 40 20
1000
1
10
100
1000
Frequency (kHz) Figure 33. IRS2106S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V
Frequency (kHz) Figure 34. IRS2106S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
140 120 Tempreture (oC) 100 80 60 40 20 1 10
140V 70V 0V
140 120 Temperature (oC) 100 80 60 40
140V 70V 0V
100
1000
20 1 10 100 1000 Frequency (kHz)
Frequency (kHz) Figure 35. IRS2106S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
Figure 36. IRS21064S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V
www.irf.com
19
IRS2106/IRS21064(S)PbF
PRELIMINARY
1 40
140 120 Temperature (oC) 100 80
0V 140V 70V
1 20
Temperature (oC)
1 00
80
140V 70V
60 40
60
0V
40
20
20 1 1 0 1 00 1 000
1
Frequency (kHz)
10
100
1000
Frequency (kHz) Figure 38. IRS21064S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
Figure 37. IRS21064S vs. Freque ncy (IRFBC30), Rg a t e =22 Ω , V CC=15 V
140 120 Temperature (oC) 100 80 60 40 20 1 10 100
140V 70V 0V
1000
Frequency (kHz) Figure 39. IRS21064S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
www.irf.com
20
IRS2106/IRS21064(S)PbF
PRELIMINARY
Case Outlines
8 Lead PDIP
D A 5 B
FOOTPRINT 8X 0.72 [.028]
01-6014 01-3003 01 (MS-001AB)
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
DIM A b c D
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
E
6.46 [.255]
1
2
3
4
e e1 H K L
8X 1.78 [.070]
.050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e e1
3X 1.27 [.050]
y
A C 0.10 [.004] y
K x 45°
8X b 0.25 [.010]
NOTES:
A1 CAB
8X L 7
8X c
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXC EED 0.15 [.006]. 6 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXC EED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8 Lead SOIC
www.irf.com
01-6027 01-0021 11 (MS-012AA)
21
IRS2106/IRS21064(S)PbF
PRELIMINARY
14 Lead PDIP
01-6010 01-3002 03 (MS-001AC)
14 Lead SOIC (narrow body)
www.irf.com
01-6019 01-3063 00 (MS-012AB)
22
IRS2106/IRS21064(S)PbF
PRELIMINARY Tape & Reel 8-lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D F C
N OT E : CO NTROLLING D IM ENSION IN MM
E G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 11 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5.5 5 0. 21 4 0 .2 18 E 6 .3 0 6.5 0 0. 24 8 0 .2 55 F 5 .1 0 5.3 0 0. 20 0 0 .2 08 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62
F
D C E B A
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 14 .5 0 1 7. 10 0. 57 0 0 .6 73 H 12 .4 0 1 4. 40 0. 48 8 0 .5 66
www.irf.com
23
IRS2106/IRS21064(S)PbF
PRELIMINARY Tape & Reel 14-lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D F C
N OT E : CO NTROLLING D IM ENSION IN MM
E G
C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 15 .7 0 1 6. 30 0. 61 8 0 .6 41 D 7 .4 0 7.6 0 0. 29 1 0 .2 99 E 6 .4 0 6.6 0 0. 25 2 0 .2 60 F 9 .4 0 9.6 0 0. 37 0 0 .3 78 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62
F
D C E B A
G
H
R E E L D IM E N S I O N S F O R 1 4 SO IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 2 2. 40 n /a 0 .8 81 G 18 .5 0 2 1. 10 0. 72 8 0 .8 30 H 16 .4 0 1 8. 40 0. 64 5 0 .7 24
www.irf.com
24
IRS2106/IRS21064(S)PbF
PRELIMINARY
LEADFREE PART MARKING INFORMATION
Part number
S IRxxxxxx
Date code
YWW? ?XXXX
IR logo
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Lot Code (Prod mode - 4 digit SPN code)
Assembly site code Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2106PbF 8-Lead SOIC IRS2106SPbF 8-Lead SOIC Tape & Reel IRS2106STRPbF 14-Lead PDIP IRS21064PbF 14-Lead SOIC IRS21064SPbF 14-Lead SOIC Tape & Reel IRS21064STRPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 5/11/2006
www.irf.com
25