Data Sheet No. PD60260
IRS2108/IRS21084(S)PbF
Features
HALF-BRIDGE DRIVER
Packages
8-Lead PDIP 14-Lead PDIP
• Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt • • • • • • • • • • •
immune Gate drive supply range from 10 V to 20 V Undervoltage lockout for both channels 3.3 V, 5 V, and 15 V input logic compatible Cross-conduction prevention logic Matched propagation delay for both channels High-side output in phase with HIN input Low-side output out of phase with LIN input Logic and power ground +/- 5 V offset Internal 540 ns deadtime, and programmable up to 5 µs with one external RDT resistor (IRS21084) Lower di/dt gate driver for better noise immunity RoHS compliant
8-Lead SOIC
14-Lead SOIC
Feature Comparison The IRS2108/IRS21084 are high voltCrossage, high speed power MOSFET and Deadtime ton/toff Input conduction Part Ground Pins IGBT drivers with dependent high- and logic prevention (ns) (ns) logic low-side referenced output channels. 2106/2301 COM HIN/LIN no none 220/200 Proprietary HVIC and latch immune 21064 VSS/COM 2108 Internal 540 COM CMOS technologies enable ruggedized HIN/LIN yes 220/200 Programmable 540 - 5000 21084 VSS/COM monolithic construction. The logic input 2109/2302 Internal 540 COM IN/SD yes 750/200 is compatible with standard CMOS or Programmable 540 - 5000 21094 VSS/COM LSTTL output, down to 3.3 V logic. The yes 160/140 HIN/LIN Internal 100 2304 COM output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.
Description
Typical Connection
VCC
up to 600 V
VCC
HIN LIN
VB HO VS LO
up to 600 V
TO LOAD
HIN LIN COM
IRS2108
VCC HIN LIN VCC HIN LIN DT VSS RDT VSS
IRS21084
HO VB VS TO LOAD
(Refer to Lead Assignments for correct pin configuration). These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
COM LO
www.irf.com
1
IRS2108/IRS21084(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB VS VHO VCC VLO DT VIN VSS dVS/dt
Definition
High-side floating absolute v oltage High-side floating supply offset voltage High-side floating output voltage Low-side and logic fixed supply voltage Low-side output voltage Programmable deadtime pin voltage (IRS21084 only) Logic input voltage (HIN & LIN ) Logic ground (IRS21084 only ) Allowable offset supply voltage transient (8 lead PDIP) (8 lead SOIC) (14 lead PDIP) (14 lead SOIC) (8 lead PDIP) (8 lead SOIC) (14 lead PDIP) (14 lead SOIC)
Min.
-0.3 VB - 25 VS - 0.3 -0.3 -0.3 V SS - 0.3 VSS - 0.3 VCC - 25 — — — — — — — — — — -50 —
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.0 0.625 1.6 1.0 125 200 75 120 150 150 300
Units
V
V/ns
PD
Package power dissipation @ TA ≤ +25 oC
W
RthJA
Thermal resistance, junction to ambient
°C/W
TJ TS TL
Junction temperature Storage temperature Lead temperature (soldering, 10 seconds)
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential.
Symbol
VB VS VHO VCC VLO
Definition
High-side floating supply absolute voltage High-side floating supply offset voltage High-side floating output voltage Low-side and logic fixed supply voltage Low-side output voltage
Min.
VS + 10 Note 1 VS 10 0 COM VSS
Max.
VS + 20 600 VB 20 VCC VCC VCC
Units
V IRS2108 VIN Logic input voltage IRS21084 DT Programmable deadtime pin voltage (IRS21084 only) VS VCC VSS Logic ground (IRS21084 only ) -5 5 TA Ambient temperature -40 125 °C Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
www.irf.com
2
IRS2108/IRS21084(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified.
Symbol
ton toff MT tr tf DT MDT
Definition
Turn-on propagation delay Turn-off propagation delay Delay matching | ton - toff | Turn-on rise time Turn-off fall time Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) Deadtime matching = | DTLO-HO - DTHO-LO |
Min.
— — — — — 400 4 — —
Typ.
220 200 0 100 35 540 5 0 0
Max. Units Test Conditions
300 280 30 220 80 680 6 60 600 µs ns ns VS = 0 V RDT= 0 Ω RDT = 200 kΩ (IR21084) RDT=0 Ω RDT= 200 kΩ (IR21084) VS = 0 V VS = 0 V or 600 V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, V SS = COM, DT= V SS and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO-
Definition
Logic “1” input voltage for HIN & logic “0” for LIN Logic “0” input voltage for HIN & logic “1” for LIN High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current
Min. Typ. Max. Units Test Conditions
2.5 — — — — 20 0.4 — — 8.0 7.4 0.3 120 250 — — 0.05 0.02 — 75 1.0 5 — 8.9 8.2 0.7 290 600 — 0.8 0.2 0.1 50 130 1.6 20
5
VCC = 10 V to 20 V V IO = 2 mA VB = VS = 600 V µA mA VIN = 0 V or 5 V VIN = 0 V or 5 V RDT=0 Ω HIN = 5 V, LIN = 0 V µA
HIN = 0 V, LIN = 5 V
9.8 9.0 — — mA — VO = 0 V, PW ≤ 10 µs VO = 15 V, PW ≤ 10 µs
V
www.irf.com
3
IRS2108/IRS21084(S)PbF
Functional Block Diagram
VB
2108
HV LEVEL SHIFTER
UV DETECT R PULSE FILTER R S Q
HO
HIN
VSS/COM LEVEL SHIFT
VS
PULSE GENERATOR
DT
DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT
VCC
+5V
LO
LIN
VSS/COM LEVEL SHIFT
DELAY
COM
VSS
VB
21084
HIN
VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR
UV DETECT R PULSE FILTER R S Q
HO
VS
DT
+5V
DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT
VCC
LO
LIN
VSS/COM LEVEL SHIFT
DELAY
COM
VSS
www.irf.com
4
IRS2108/IRS21084(S)PbF
Lead Definitions
Symbol Description
HIN LIN DT VSS VB HO VS VCC LO COM Logic input for high-side gate driver output (HO), in phase (referenced to COM for IRS2108 and VSS for IRS21084) Logic input for low-side gate driver output (LO), out of phase (referenced to COM for IRS2108 and VSS for IRS21084) Programmable deadtime lead, referenced to VSS (IR21084 only) Logic ground (IRS21084 only) High-side floating supply High-side gate driver output High-side floating supply return Low-side and logic fixed supply Low-side gate driver output Low-side return
Lead Assignments
1 2 3 4 VCC HIN LIN COM VB HO VS LO
8
7 6 5
1 2 3 4
VCC HIN LIN COM
VB HO VS LO
8
7 6 5
8 Lead PDIP
8 Lead SOIC
IRS2108PbF
IRS2108SPbF
1 2 3 4 5 6 7
VCC HIN LIN DT VSS COM LO VB HO VS
14
13 12 11 10 9 8
1 2 3 4 5 6 7
VCC HIN LIN DT VSS COM LO VB HO VS
14
13 12 11 10 9 8
14 Lead PDIP
14 Lead SOIC
IRS21084PbF
www.irf.com
IRS21084SPbF
5
IRS2108/IRS21084(S)PbF
HIN
LIN
HO
LIN
50% 50%
LO
ton
Figure 1. Input/Output Timing Diagram
tr 90%
toff 90%
tf
LO
10%
10%
50%
50%
HIN
ton tr 90%
HIN LIN
50% 50%
toff 90%
tf
HO
90%
10%
10%
Figure 2. Switching Time Waveform Definitions
HO LO
DT LO-HO
10% DT HO-LO
90%
10% MDT= DT LO-HO - DT
HO-LO
Figure 3. Deadtime Waveform Definitions
www.irf.com
6
IRS2108/IRS21084(S)PbF
Turn-On Propagation Delay (ns)
400 300
M ax.
Turn-On Propagation Delay (ns)
500
500 400
M ax.
300 200 100 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 4B. Turn-On Propagation Delay vs. Supply Voltage
Typ.
200
Typ.
100 0 -50
-25
0
25
50
75
100 125
Temperature ( oC) Figure 4A. Turn-On Propagation Delay vs. Tem perature
Turn-Off Propagation Delay (ns)
Turn-Off Propagation Delay (ns)
500 400 300
M ax.
500 400
M ax.
300
Typ.
200
Typ.
200 100 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage
100 0 -50
-25
0
25
50
75
100 125
Temperature ( oC) Figure 5A. Turn-Off Propagation Delay vs.Tem perature
www.irf.com
7
IRS2108/IRS21084(S)PbF
500 Turn-On Rise Time (ns )
500 Turn-On Rise Time (ns) 400 300
Max.
400 300 200
Max.
200 100 0
100
Typ.
Typ.
0 -50
-25
0
25
50
o
75
100
125
10
12
14
16
18
20
Temperature ( C) Figure 6A. Turn-On Rise Time vs.Temperature
V BIAS Supply Voltage (V) Figure 6B. Turn-On Rise Time vs. Supply Voltage
200
200
Turn-Off Fall Time (ns)
150 100 50 0 -50
Turn-Off Fall Time Time ) Turn-Off Fall (ns)
-25 0 25 50
o
150 100 50 0
75
100
125
10
12
14
16
18
20
Temperature ( C) Figure 7A. Turn-Off Fall Tim e vs. Temperature
Input Voltage (V) Figure 7B. Turn-Off Fall Time vs. Input voltage
www.irf.com
8
IRS2108/IRS21084(S)PbF
1000 800
Max.
1000 800 600 400 200
-25 0 25 50 75 100 125
Deadtime (ns)
Deadtime (ns)
Max. Typ.
600
Typ.
Min.
400
Min.
200 -50
10
12
14
16
18
20
Temperature (oC) Figure 8A. Deadtim e vs. Tem perature
V BIAS Supply Voltage (V) Figure 8B. Deadtim e vs. Supply Voltage
7 6
Max.
8 7 Input Voltage (V) 6 5 4 3 2 1 0 -50
Min.
Deadtime ((µs)
5 4 3 2 1 0 0 50 100 RDT ( kΩ) Figure 8C. Deadtim e vs. RDT ( IR21084 Only) 150
Typ. Min.
200
-25
0
25
50
o
75
100
125
Temperature ( C) Figure 9A. Logic "1" Input Voltage vs. Tem perature
www.irf.com
9
IRS2108/IRS21084(S)PbF
8 7
4.0 Input Voltage (V) 3.2 2.4 1.6 0.8
Min.
Input Voltage (V)
6 5 4 3 2 1 0 10 12 14 16 18 20 V BAIS Supply Voltage (V) Figure 9B. Logic "1" Input Voltage vs. Supply Voltage
Min.
0.0 -50
-25
0
25
50
75
100
125
Temperature ( oC) Figure 10A. Logic "0" Input Voltage vs. Tem perature
4.0 3.2 2.4 1.6 0.8 0.0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 10B. Logic "0" Input Voltage vs. Supply Voltage
Min.
High Level Output Voltage (V )
0.5 0.4 0.3 0.2 0.1
Typ.
Input Voltage (V)
Max.
0.0 -50
-25
0
25
50
75
100
125
Temperature (oC) Figure 11A. High Level Output Voltage vs. Temperature
www.irf.com
10
IRS2108/IRS21084(S)PbF
High Level Output Voltage (V)
0.4 0.3 0.2 0.1
Typ. Max.
Low Level Output Voltage (V)
0.5
0.5 0.4 0.3 0.2 0.1
Max.
Typ.
0.0 10 12 14 16 18 20 VBAIS Supply Voltage (V) Figure 11B. High Lovel Output Voltage vs. Supply Voltage
0.0 -50
-25
0
25
50
o
75
100
125
Temperature ( C) Figure 12A. Low Level Output Voltage vs.Temperature
Low Level Output Voltage (V)
0.5 0.4 0.3 0.2
Max.
( A) Offset Supply Leakage Current ( µA)
500 400 300 200 100
M ax.
0.1
Typ.
0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 12B. Low Level Output Voltage vs. Supply Voltage
0 -50
-25
0
25
50
75
100 125
Temperature ( oC) Figure 13A. Offset Supply Leakage Current vs. Tem perature
www.irf.com
11
IRS2108/IRS21084(S)PbF
Offset Supply Leakage Current (( A) µ A)
500 400 300 200 100
M ax.
400
A) V BS Supply Current (µA)
300
200
M ax.
100
Typ. Mi n.
0 0 100 200 300 400 500 600 V B Boost Voltage (V) Figure 13B. Offset Supply Leakage Current vs. Tem perature
0 -50
-25
0 25 50 75 Temperature ( oC)
100 125
Figure 14A. V BS Supply Current vs. Tem perature
400 VCC Supply Current (mA)
3.0 2.5 2.0
M ax.
A) V BS Supply Current (µA)
300
200
M ax. Typ. Mi n.
1.5
Typ.
1.0 0.5
Mi n.
100
0 10 12 14 16 18 20 V BS Supply Voltage (V) Figure 14B. V BS Supply Current vs. Supply Voltage
0.0 -50
-25
0
25
50
75
100 125
Temperature ( oC)
Figure 15A. V CC Supply Current vs. Tem perature
www.irf.com
12
IRS2108/IRS21084(S)PbF
3.0 V CC Supply Current (mA) 2.5 2.0 1.5 1.0 0.5 0.0 10 12 14 16 18 V CC Supply Voltage (V) 20
Max. Typ. Min.
60
( Logic "1" Input Current ( µA)
50 40 30 20 10 0 -50 -25 0 25 50
o Max. Typ.
75
100
125
Temperature ( C) Figure 16A. Logic "1" Input Current vs. Tem perature
Figure 15B. V CC Supply Current vs. Supply Voltage
60 50 40 30
Max.
Lo gic "0" Input Bia s Current (µA)
6 5 4 3 2 1 0 -50 Max
µA Logic "1" Input Current(µA)) (
20 10 0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 16B. Logic "1" Input Current vs. Supply Voltage
Typ.
-25
0
25
50
75
100
125
Temperature (°C)
Figure 17A. Logic "0" Input Bias Current vs. Temperature
www.irf.com
13
IRS2108/IRS21084(S)PbF
Logic "0" Input Bias C urrent (µA)
6 5 4 3 2 1 0 10 12 14 16 18 20 Max
V CC UVLO Threshold (+) (V)
12 11 10 9 8 7 -50 -25 0 25 50
o
Max. Typ.
Min.
75
100
125
Supply Voltage (V) F i gure 17B. Lo gic "0" Input Bias Cur rent Figure 17B. Logic "0" Input Bias Current
vs. Voltage
Temperature ( C) Figure 18. V CC Undervoltage Threshold (+) vs. Tem perature
11 VCC UVLO Threshold (-) (V) 10 9 8
Min. Max.
12 V BS UVLO Threshold (+) (V) 11 10 9 8
Max. Typ.
Typ.
7 6 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 19. V CC Undervoltage Threshold (-) vs. Tem perature
Min.
7 -50
-25
0
25
50
o
75
100
125
Temperature ( C) Figure 20. V BS Undervoltage Threshold (+) vs. Tem perature
www.irf.com
14
IRS2108/IRS21084(S)PbF
V BS UVLO Threshold (-) (V)
Output Source Current (m ) (mA) Α
11 10 9 8
Mi n. M ax. Typ.
500 400
Typ.
300 200 100
Min.
7 6 -50
-25
0
25
50
75
100 125
0 -50
-25
0
25
50
75
100
125
Temperature ( oC) Figure 21. V BS Undervoltage Threshold (-) vs. Tem perature
Temperature (oC)
Figure 22A. Output Source Current vs. Tem perature
Output Source Current (mA) (m ) Α
500 400 300 200
Typ.
1000 Output Sink Current (m ) (mA) Α 800 600 400
Min. Typ.
100
Min.
200 0 -50
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 22B. Output Source Current vs. Supply Voltage
-25
0
25
50
75
100
125
Temperature (oC)
Figure 23A. Output Sink Curre nt vs .Te m pe rature
www.irf.com
15
IRS2108/IRS21084(S)PbF
1000 800 600 400
Typ.
0 V S Offset Supply Voltage (V) -2
Typ.
Output Sink Current (mA)
-4 -6 -8 -10
200
Min.
0 10 12 14 16 18 20
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 23B. Output Sink Current vs. Supply Voltage
V BS Floating Supply Voltage (V) Figure 24. Maxim um V s Negative Offset vs. Supply Voltage
140 120
o Temperature (o C) Temperature ( C)
140 120
Temperature (o C)
100 80 60 40 20 1 10 100 1000 Frequency (kHz)
1V 40 70 V 0V
100
1V 40
80
70 V
60 40 20 1 10 100
0V
1000
Frequency (kHz) Figure 26. IRS2108 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V
Figure 25. IRS2108 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V
www.irf.com
16
IRS2108/IRS21084(S)PbF
1 40
140 120
1 V 70 V 40 0V
1 20
Temperature (o C)
Temperature (o C)
1 00
1V 40 70 V
100 80 60 40
80
60
0V
40
20
20 1 1 0 1 00 1 000
1
10
100
1000
Frequency (kHz) Figure 27. IRS2108 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
Frequency (kHz) Figure 28. IRS2108 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
140
1 40
Temperature (o C)
100 80 60 40 20 1 10 100 1000
1V 40 70 V 0V
p () Temperature (o C)
120
1 20
1 00
80 1V 40 60 70 V 40 0V
20 1 1 0 1 00 1 000
Frequency (kHz) Figure 29. IRS21084 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V
Frequency (kHz) Figure 30. IRS21084 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V
www.irf.com
17
IRS2108/IRS21084(S)PbF
140 120
1 40
1V 40
1 20
70 V
Temperature (o C)
100
1V 40
Temperature (o C)
1 00 0V 80
80 60 40 20 1 10 100
70 V 0V
60
40
1000
20 1 1 0 1 00 1 000
Frequency (kHz) Figure 31. IRS21084 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
Frequency (kHz)
Figure 32. IRS21084 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
140 120
1 40
1 20
Temperature (o C)
Temperature (o C)
100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 33. IRS2108S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V
1V 40 70 V 0V
1 00
1V 40 70 V
80 0V 60
40
20 1 1 0 1 00 1 000
Frequency (kHz)
Figure 34. IRS2108S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V
www.irf.com
18
IRS2108/IRS21084(S)PbF
140 120
1 V 70 V 40
140
1 V 70 V 0 V 40
Temperature (o C)
Temperature (o C)
120 100 80 60 40 20
100 80 60 40 20 1 10 100
0V
1 1000 Frequency (kHz)
10
100
1000
Frequency (kHz) Figure 36. IRS2108S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
Figure 35. IRS2108S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
140 120
1 40
1 20
Temperature (o C)
Temperature (o C)
100 80 60 40 20 1 10 100 1000
1V 40 70 V 0V
1 00
80
1V 40 70 V
60 0V 40
20 1 1 0 1 00 1 000
Frequency (kHz) Figure 37. IRS21084S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V
Frequency (kHz) Figure 38. IR21084S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V
www.irf.com
19
IRS2108/IRS21084(S)PbF
140 120
140 120
1 V 70 V 40 0V
Temperature (o C)
100 80 60 40 20 1 10 100
Temperature (o C)
1V 40 70 V 0V
100 80 60 40 20
1000
1
10
100
1000
Frequency (kHz) Figure 39. IRS21084S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
Frequency (kHz) Figure 40. IRS21084S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
www.irf.com
20
IRS2108/IRS21084(S)PbF
Case outlines
8-Lead PDIP
DIM
FOOTPRINT 8X 0.72 [.028]
01-6014 01-3003 01 (MS-001AB)
D A 5
B
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574
MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A b c D
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
E
6.46 [.255]
1
2
3
4
e e1 H K L
8X 1.78 [.070]
.050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e e1
3X 1.27 [.050]
y
A C 0.10 [.004] y
K x 45°
8X b 0.25 [.010]
NOTES:
A1 CAB
8X L 7
8X c
1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8-Lead SOIC
www.irf.com
01-6027 01-0021 11 (MS-012AA)
21
IRS2108/IRS21084(S)PbF
14 Lead PDIP
01-6010 01-3002 03 (MS-001AC)
14-Lead SOIC (narrow body)
01-6019 01-3063 00 (MS-012AB)
www.irf.com
22
IRS2108/IRS21084(S)PbF
Tape & Reel 8-lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D F C
N OT E : CO NTROLLING D IM ENSION IN MM
E G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 11 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5.5 5 0. 21 4 0 .2 18 E 6 .3 0 6.5 0 0. 24 8 0 .2 55 F 5 .1 0 5.3 0 0. 20 0 0 .2 08 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62
F
D C E B A
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 14 .5 0 1 7. 10 0. 57 0 0 .6 73 H 12 .4 0 1 4. 40 0. 48 8 0 .5 66
www.irf.com
23
IRS2108/IRS21084(S)PbF
Tape & Reel 14-lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D F C
N OT E : CO NTROLLING D IM ENSION IN MM
E G
C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 15 .7 0 1 6. 30 0. 61 8 0 .6 41 D 7 .4 0 7.6 0 0. 29 1 0 .2 99 E 6 .4 0 6.6 0 0. 25 2 0 .2 60 F 9 .4 0 9.6 0 0. 37 0 0 .3 78 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62
F
D C E B A
G
H
R E E L D IM E N S I O N S F O R 1 4 SO IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 2 2. 40 n /a 0 .8 81 G 18 .5 0 2 1. 10 0. 72 8 0 .8 30 H 16 .4 0 1 8. 40 0. 64 5 0 .7 24
www.irf.com
24
IRS2108/IRS21084(S)PbF
LEADFREE PART MARKING INFORMATION
Part number
S IRxxxxxx
Date code
YWW? ?XXXX
IR logo
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Lot Code (Prod mode - 4 digit SPN code)
Assembly site code Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2108PbF 8-Lead SOIC IRS2108SPbF 8-Lead SOIC Tape & Reel IRS2108STRPbF 14-Lead PDIP IRS21084PbF 14-Lead SOIC IRS21084SPbF 14-Lead SOIC Tape & Reel IRS21084STRPbF
The SOIC-8 is MSL2 qualified. The SOIC-14 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 Data and specifications subject to change without notice. 12/4/2006
www.irf.com
25