0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRS2109PBF

IRS2109PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRS2109PBF - HALF-BRIDGE DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IRS2109PBF 数据手册
Data Sheet No. PD60261 IRS2109/IRS21094(S)PbF Features HALF-BRIDGE DRIVER Product Summary VOFFSET IO+/VOUT ton/off (typ.) Deadtime 600 V max. 120 mA / 250 mA 10 V - 20 V 750 ns & 200 ns 540 ns • Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt • Gate drive supply range from 10 V to 20 V • Undervoltage lockout for both channels • 3.3 V, 5 V, and 15 V input logic compatible • Cross-conduction prevention logic • Matched propagation delay for both channels • High-side output in phase with IN input • Logic and power ground +/- 5 V offset. • Internal 540 ns deadtime, and programmable immune up to 5 µs with one external RDT resistor (IRS21094) • Lower di/dt gate driver for better noise immunity • Shutdown input turns off both channels. • RoHS compliant (programmable up to 5 µs for IRS21094) Packages Description The IRS2109/IRS21094 are high voltage, high speed power MOSFET and IGBT drivers with depen dent hig h- a nd low - side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the highside configuration which operates up to 600 V. 8 Lead SOIC 14 Lead SOIC 14 Lead PDIP 8 Lead PDIP Typical Connection V CC up to 600 V V CC IN SD VB HO VS LO TO LOAD IN SD COM up to 600 V IRS21094 HO IRS2109 VCC IN SD VCC IN SD DT VB VS TO LOAD (Refer to Lead Assignments for correct configuration). These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. V SS RDT VSS COM LO www.irf.com 1 IRS2109/IRS21094(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO DT VIN VSS dVS/dt Definition High-side floating absolute voltage High-side floating supply offset voltage High-side floating output voltage Low-side and logic fixed supply voltage Low-side output voltage Programmable deadtime pin voltage (IRS21094 only) Logic input voltage (IN & SD) Logic ground (IRS21094/IRS21894 only) Allowable offset supply voltage transient (8 Lead PDIP) (8 Lead SOIC) (14 lead PDIP) (14 lead SOIC) (8 Lead PDIP) (8 Lead SOIC) (14 lead PDIP) (14 lead SOIC) Min. -0.3 VB - 25 VS - 0.3 -0.3 -0.3 VSS - 0.3 VSS - 0.3 VCC - 25 — — — — — — — — — — -50 — Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.0 0.625 1.6 1.0 125 200 75 120 150 150 300 Units V V/ns PD Package power dissipation @ TA £ +25 °C W RthJA Thermal resistance, junction to ambient °C/W TJ TS TL Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) °C www.irf.com 2 IRS2109/IRS21094(S)PbF Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential. Symbol VB VS VHO VCC VLO VIN DT VSS TA Definition High-side floating supply absolute voltage High-side floating supply offset voltage High-side floating output voltage Low-side and logic fixed supply voltage Low-side output voltage Logic input voltage (IN & SD) Programmable deadtime pin voltage (IRS21094 only) Logic ground (IRS21094 only) Ambient temperature Min. VS + 10 (Note 1) VS 10 0 VSS Max. VS + 20 600 VB 20 VCC VCC VCC 5 125 Units V VSS -5 -40 °C Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM, C L = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified. Symbol ton toff tsd MT tr tf DT Definition Turn-on propagation delay Turn-off propagation delay Shutdown propagation delay Delay matching, HS & LS turn-on/off Turn-on rise time Turn-off fall time Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO ) Min. — — — — — — 400 4 — — Typ. 750 200 2 00 0 100 35 540 5 0 0 Max. Units Test Conditions 950 280 280 70 220 80 680 6 60 600 µs ns ns VS = 0 V RDT= 0 Ω R DT = 200 kΩ (IR21094) RDT= 0 Ω RDT = 200 kΩ (IR21094) VS = 0 V VS = 0 V or 600 V MDT Deadtime matching = DTLO - HO - DTHO-LO www.irf.com 3 IRS2109/IRS21094(S)PbF Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM, DT= VSS and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS /COM and are applicable to the respective input leads: IN and SD. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol VIH VIL VSD,TH+ VSD,THVOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO- Definition Logic “1” input voltage for HO & logic “0” for LO Logic “0” input voltage for HO & logic “1” for LO SD input positive going threshold SD input negative going threshold High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current Min. Typ. Max. Units Test Conditions 2.5 — 2.5 — — — — 20 0.4 — — 8.0 7.4 0.3 120 250 — — — — 0.05 0.02 — 75 1.0 5 — 8.9 8.2 0.7 290 600 — 0.8 — 0.8 0.2 0.1 50 130 1.6 20 2 9.8 9.0 — — — mA VO = 0 V, PW ≤ 10 µs VO = 15 V,PW ≤ 10 µs µA µA mA V IO = 2 mA VB = VS = 600 V VIN = 0 V or 5 V VIN = 0 V or 5 V RDT = 0 Ω IN = 5 V, SD = 0 V IN = 0 V, SD = 5 V VCC = 10 V to 20 V V www.irf.com 4 IRS2109/IRS21094(S)PbF Functional Block Diagrams VB IRS2109 IN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR UV DETECT R PULSE FILTER R S Q HO VS DEADTIME UV DETECT VCC +5V LO SD VSS/COM LEVEL SHIFT DELAY COM VB IRS21094 IN VSS/CO M LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR UV DETECT R PULSE FILTER R S Q HO VS DT +5V DEAD TIM E UV DETECT VCC LO SD VSS/CO M LEVEL SHIFT DELAY CO M VSS www.irf.com 5 IRS2109/IRS21094(S)PbF Lead Definitions Symbol Description IN SD DT VSS VB HO VS VCC LO COM Logic input for high-side and low-side gate driver outputs (HO and LO), in phase with HO (referenced to COM for IRS2109 and VSS for IRS21094) Logic input for shutdown (referenced to COM for IRS2109 and VSS for IRS21094) Programmable deadtime lead, referenced to VSS. (IRS21094 only) Logic ground (IRS21094 only) High-side floating supply High-side gate drive output High-side floating supply return Low-side and logic fixed supply Low-side gate drive output Low-side return Lead Assignments 1 2 3 4 VCC IN SD COM VB HO VS LO 8 7 6 5 1 2 3 4 VCC IN SD COM VB HO VS LO 8 7 6 5 8 Lead PDIP 8 Lead SOIC IRS2109PbF IRS2109SPbF 1 2 3 4 5 6 7 VCC IN SD DT VSS COM LO VB HO VS 14 13 12 11 10 9 8 1 2 3 4 5 6 7 VCC IN SD DT VSS COM LO VB HO VS 14 13 12 11 10 9 8 14 Lead PDIP 14 Lead SOIC IRS21094PbF www.irf.com IRS21094SPbF 6 IRS2109/IRS21094(S)PbF IN IN(LO) 50% 50% SD IN(HO) ton tr 90% toff 90% tf HO LO LO HO Figure 1. Input/Output Timing Diagram 10% 10% Figure 2. Switching Time Waveform Definitions 50% 50% IN SD 50% 90% tsd HO 90% DT LO-HO 10% DT HO-LO HO LO LO 90% 10% MDT= DT LO-HO - DT HO-LO Figure 3. Shutdown Waveform Definitions Figure 4. Deadtime Waveform Definitions IN (LO) 50% 50% IN (HO) LO HO 10% MT 90% MT LO HO Figure 5. Delay Matching Waveform Definitions www.irf.com 7 IRS2109/IRS21094(S)PbF 1300 1300 Turn-On Propagation Delay (ns) Turn-On Propagation Delay (ns) 1100 1100 M ax. 900 M ax 900 Typ. 700 Typ. 700 500 50 500 25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Figure 6A. Turn-On Propagation Delay vs. Temperature VBIAS Supply Voltage (V) Figure 6B. Turn-On Propagation Delay vs. Supply Voltage 500 500 Turn-Off Propagation Delay (ns) Turn-Off Propagation Delay (ns) 400 400 M ax. 300 Typ. 200 300 M ax. 200 Typ. 100 100 0 50 25 0 25 50 o 0 75 100 125 10 12 14 16 18 20 Temperature ( C) Figure 7A. Turn-Off Propagation Delay vs. Temperature V BIAS Supply Voltage (V) Figure 7B. Turn-Off Propagation Delay vs. Supply Volta ge www.irf.com 8 IRS2109/IRS21094(S)PbF 500 500 SD Propagation Delay (ns) 400 SD Propagation Delay (ns) 400 M ax. 300 Typ. 200 300 M ax. 200 Typ. 100 100 0 50 25 0 25 50 o 0 75 100 125 10 12 14 16 18 20 Temperature ( C) Figure 8A. SD Propagation Delay vs. Temperature V BIAS Supply Voltage (V) Figure 8B. SD Propagation Delay vs. Supply Voltage 5 00 T urn-O n Rise i e (ns ) s m Turn-On R i e TTime (ns) 4 00 3 00 2 00 Max. 50 0 Turn-Onn Rise T i e (ns ) T urn-O R i e Time (ns) s m 40 0 30 0 Max. 20 0 Typ. 1 00 Typ. 10 0 0 0 -5 0 -2 5 0 25 50 75 1 00 1 25 Temperature(oC) Figure 9A. Turn-On Rise Time vs. Temperature 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 9B. Turn-On Rise Time vs. Supply Volta ge www.irf.com 9 IRS2109/IRS21094(S)PbF 2 00 Turn-Off Fall Time (ns) 200 T u Fall Time i e lm Turn-Off rn -O ff F al T(ns) 1 50 1 00 Max. 150 100 Max. 50 Typ . 50 Typ . 0 -5 0 -2 5 0 25 50 75 1 00 1 25 Temperature(oC) Figure 10A. Turn-Off Fall Time vs. Temperature 0 10 12 14 16 18 20 Input Voltage (V) Figure 10B. Turn-Off Fall Time vs. Supply Voltage 1000 1000 800 800 M ax. Deadtime (ns) Deadtime (ns) M ax. 600 Typ. Mi n. 600 Typ. Mi n. 400 400 200 50 25 0 25 50 o 200 75 100 125 10 12 14 16 18 20 Temperature ( C) V BIAS Supply Voltage (V) Figure 11B. Deadtime vs. Supply Voltage Figure 11A. Deadtime vs. Temperature www.irf.com 10 IRS2109/IRS21094(S)PbF 7 6 5 Input Voltage (V) M ax. Deadt (µ ( D ead tim eime s )s ) 5 Typ. 4 3 2 1 0 0 50 100 150 200 M in. 4 3 Min. 2 1 -50 -25 0 25 50 75 100 125 RDT ((KΩ) RDT k Ω Figure 11C. Deadtime vs. R DT (IR21094 only) Tem perature (oC ) Figure 12A. Logic “1” Input Voltage vs. Temperature 5 Lo gic "0" Input Bia s Curr ent ( µA) 6 5 4 3 2 1 0 -50 Max Input Voltage (V) 4 3 Min. 2 1 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 12B. Logic “1” Input Voltage vs. Supply Voltage -25 0 25 50 75 100 125 Temperature (°C) Figure 13A. Logic "0" Input Bias Current vs. Temperature www.irf.com 11 IRS2109/IRS21094(S)PbF Logic "0" Input Bias C urrent (µA) 6 5 4 3 2 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 13B. Logic "0" Input Bias Current vs. Voltage 5 Max SD Input threshold (+) (V) 4 3 Max. 2 1 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 14A. SD Input Positive Going Threshold (+) vs. Temperature 5 4 3 2 1 0 10 12 14 16 18 20 Max. 5 SD Negativ e Going Threshold (V ) SD Input threshold (+) (V) 4 3 2 1 M in. 0 -50 -25 0 25 50 o 75 100 125 VCC Supply Voltage (V) Figure 14B. SD Input Positive Going Threshold (+) vs. Supply Voltage Temperature ( C) Figure 15A. SD Negative Going Threshold vs. Temperature www.irf.com 12 IRS2109/IRS21094(S)PbF 5 SD Negative Going Threshold (V) High Level Output Voltage (V) 0.5 0.4 0.3 0.2 0.1 Typ. 4 3 2 Max. 1 Mi n. 0 10 12 14 16 18 20 0.0 -50 -25 0 25 50 75 100 125 V CC Supply Voltage (V) Figure 15B. SD Negative Going Threshold vs. Supply Volta ge Temperature (oC) Figure 16A. High Level Output Voltage vs. Temperature High Level Output Voltage (V) 0.4 0.3 0.2 0.1 Typ. Low Level Output Voltage (V) 0.5 0.5 0.4 0.3 0.2 0.1 Max. Typ. Max. 0.0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 16B. High Level Output Voltage vs. Supply Volta ge 0.0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 17A. Low Level Output Voltage vs. Temperature www.irf.com 13 IRS2109/IRS21094(S)PbF 0.4 0.3 0.2 Max. Offset Supply Leakage Current (( A) Offset Supply Leakage Current µ A) Low Level Output Voltage (V) 0.5 500 400 300 200 0.1 Typ. 100 M ax. 0 50 25 0 25 50 o 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 17B. Low Level Output Voltage vs. Supply Voltage 75 100 125 Temperature ( C) Figure 18A. Offset Supply Leakage Current vs. Temperature OOffset S u p p l LLeakageCCurrent( (µA)) ffs e t Supply e a ka g e u rre n t y A 500 400 400 V BS S u p p l u rre n t A) y VBS Supply CCurrent((µA ) 300 300 200 200 M ax. 100 Typ. Mi n. 100 M ax. 0 0 100 200 300 400 500 600 0 50 25 0 25 50 75 100 125 VB Boost Voltage (V) Temperature (oC) Figure 18B. Offset Supply Leakage Current vs. Boost Voltage Figure 19A. VBS Supply Current vs. Temperature www.irf.com 14 IRS2109/IRS21094(S)PbF 400 3. 0 VBS Supply Current (µA) 2. 5 300 VCC Supply Current (mA) 2. 0 M ax. 1. 5 Typ. 1. 0 Mi n. 0. 5 200 M ax. 100 Typ. Mi n. 0 10 12 14 16 18 20 0. 0 50 25 0 25 50 75 100 125 VBS Supply Voltage (V) Figure 19B. VBS Supply Current vs. Supply Voltage Temperature (oC) Figure 20A. V CC Supply Current vs. Temperature 3. 0 60 V CC Supply Current (mA) 2. 5 Logic "1" Input Current (µA ) 12 14 16 18 20 50 2. 0 40 1. 5 M ax. 1. 0 Typ. 0. 5 Mi n. 0. 0 10 30 20 M ax. Typ. 0 50 25 0 25 50 75 100 125 10 V CC Supply Voltage (V) Temperature ( oC) Figure 20B. VCC Supply Current vs. VCC Supply Voltage Figure 21A. Logic “1” Input Current vs. Temperature www.irf.com 15 IRS2109/IRS21094(S)PbF 60 5 Logic "1" Input A) Logic “1” Input Current ( µA) 50 Logic 0” Input Current ((µA) "0" Input Current A) 12 14 16 18 20 4 40 3 M ax. 2 30 M ax. 20 10 Typ. 0 10 1 0 50 25 0 25 50 o 75 100 125 V CC Supply Voltage (V) Figure 21B. Logic “1” Input Current vs. Supply Voltage Temperature ( C) Figure 22A. Logic “0” Input Current vs. Temperature 5 12 V CC UVLO Threshold (+) (V) Logic "0" Input Current ((µA) Logic 0” Current A) 4 11 3 M ax. 2 10 M ax. 9 Typ. Mi n. 8 1 0 10 12 14 16 18 20 7 50 25 0 25 50 o 75 100 125 V CC Supply Voltage (V) Figure 22B. Logic “0” Input Currentt vs. Supply Voltage Temperature ( C) Figure 23. VCC Undervoltage Threshold (+) vs. Temperature www.irf.com 16 IRS2109/IRS21094(S)PbF 11 12 V CC UVLO Threshold (-) (V) V BS UVLO Threshold (+) (V) 0 25 50 75 100 125 10 M ax. 9 Typ. 8 Mi n. 7 11 10 M ax. Typ. 9 Mi n. 8 6 50 25 7 50 25 0 25 50 75 100 125 Temperature ( oC) Figure 24. V CC Undervoltage Threshold (-) vs. Temperature Temperature ( oC) Figure 25. VBS Undervoltage Threshold (+) vs. Temperature 11 500 V BS UVLO Threshold (-) (V) Output Source Current (mA) 10 400 Typ. 300 M ax. 9 Typ. 8 Mi n. 7 200 Min. 100 6 50 25 0 25 50 75 100 125 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 26. V BS Undervoltage Threshold (-) vs. Temperature Temperature (oC) Figure 27A. Output Source Current vs. Temperature www.irf.com 17 IRS2109/IRS21094(S)PbF 500 Output Source Current (m Output SourceCurrent (µA) ) Α Output Sink Current A) Output Sink Current (µ(m) Α 1000 800 600 400 Min. Typ. 400 300 200 Typ. 100 Min. 200 0 -50 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 27B. Output Source Current vs. Supply Voltage -25 0 25 50 75 100 125 Temperature (oC) Figure 28A. Output Sink Current vs. Temperature 1000 V S Offset Supply Voltage (V) 0 Output SinkCurrent (µA) ) Α Output Sink Current (m 800 600 400 Typ. -2 Typ. -4 -6 200 Min. -8 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 28B. Output Sink Currentt vs. Supply Voltage -10 10 12 14 16 18 20 V BS Flouting Supply Voltage (V) Figure 29. Maximum V S Negative Offset vs. Supply Voltage www.irf.com 18 IRS2109/IRS21094(S)PbF 140 Temperature (oC) 120 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 30. IRS2109 vs Frequency (IRFBC20) Rgate = 33 Ω, VCC = 15 V 140 V 70 V 0V 140 120 Temperature (oC) 100 140 V 80 70 V 60 40 20 1 10 100 0V 1000 Frequency (kHz) Figure 31. IRS2109 vs Frequency (IRFBC30) Rgate = 22 Ω, VCC = 15 V 140 120 Temperature ( oC) 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Temperature (oC) 140 V 70 V 0V 140 120 100 80 60 40 20 1 10 100 140 V 70 V 0V 1000 Frequency (kHz) Figure 32. IRS2109 vs Frequency (IRFBC40) Rgate = 15 Ω, VCC = 15 V Figure 33. IRS2109 vs Frequency (IRFPE50) Rgate = 10 Ω, VCC = 15 V www.irf.com 19 IRS2109/IRS21094(S)PbF 140 120 Temperature (oC) 100 80 60 40 0V 140 V 70 V 140 120 Temperature (oC) 100 80 140 V 60 40 20 70 V 0V 20 1 10 100 1000 Frequency (kHz) Figure 34. IRS21094 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 1 10 100 1000 Frequency (kHz) Figure 35. IRS21094 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 140 120 Temperature (oC) o Temperature ( C) 140 120 100 80 60 40 20 1 10 100 1000 1 10 100 140 V 70 V 100 140 V 0V 80 60 40 20 Frequency (kHz) 70 V 0V 1000 Frequency (kHz) Figure 37. IRS21094 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V Figure 36. IRS21094 vs. Frequency (IRFBC40), Rgate=15 Ω , VCC=15 V www.irf.com 20 IRS2109/IRS21094(S)PbF 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 38. IRS2109S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 140 V 70 V 0V 140 120 140 V Temperature (oC) 100 80 60 40 20 1 10 100 70 V 0V 1000 Frequency ( kHz) Figure 39. IRS2109S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 140 120 Temperature (oC) 140 V 70 V 140 120 140 V 70 V 0 V 0V Tempreture (oC) 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 40. IRS2109S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 41. IRS2109S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V www.irf.com 21 IRS2109/IRS21094(S)PbF 140 120 Temperature (oC) Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 42. IRS21094S vs. Frequency (IRFBC20), Rgate=33 Ω, Vcc=15 V 140 V 70 V 0V 140 120 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 43. IRS21094S vs. Frequency (IRFBC30), Rgate=22 Ω, Vcc=15 V 140 V 70 V 0V 140 120 o Temperature ( C) 140 120 Temperature (oC) 100 80 60 40 140 V 70 V 0V 140 V 70 V 0V 100 80 60 40 20 20 1 10 100 1000 Frequency (kHz) Figure 44. IRS21094S vs. Frequency (IRFBC40), Rgate=15 Ω, Vcc=15 V Figure 45. IRS21094S vs. Frequency (IRFPE50), Rgate=10 Ω, Vcc=15 V 1 10 100 1000 Frequency (kHz) www.irf.com 22 IRS2109/IRS21094(S)PbF Case Outlines 8 Lead PDIP 01-6014 01-3003 01 (MS-001AB) D A 5 B FOOTPRINT 8X 0.72 [.028] DIM A b c D INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A E 6.46 [.255] 1 2 3 4 e e1 H K L 8X 1.78 [.070] .050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e e1 3X 1.27 [.050] y A C 0.10 [.004] y K x 45° 8X b 0.25 [.010] NOTES: A1 CAB 8X L 7 8X c 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENG TH OF LEAD FOR SOLDERING TO A SUBSTRATE. 8 Lead SOIC www.irf.com 01-6027 01-0021 11 (MS-012AA) 23 IRS2109/IRS21094(S)PbF 14 Lead PDIP 01-6010 01-3002 03 (MS-001AC) 14 Lead SOIC (narrow body) 01-6019 01-3063 00 (MS-012AB) www.irf.com 24 IRS2109/IRS21094(S)PbF Tape & Reel 8-lead SOIC LOAD ED TA PE FEED DIRECTION B A H D F C N OTE : CO NTROLLING D IMENSION IN M M E G C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p e r i a l Cod e M in M ax M in M ax A 7 .9 0 8 .1 0 0 . 31 1 0 .3 1 8 B 3 .9 0 4 .1 0 0 . 15 3 0 .1 6 1 C 1 1 .7 0 1 2.30 0 .4 6 0 .4 8 4 D 5 .4 5 5 .5 5 0 . 21 4 0 .2 1 8 E 6 .3 0 6 .5 0 0 . 24 8 0 .2 5 5 F 5 .1 0 5 .3 0 0 . 20 0 0 .2 0 8 G 1 .5 0 n/ a 0 . 05 9 n/ a H 1 .5 0 1 .6 0 0 . 05 9 0 .0 6 2 F D C E B A G H R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p e r i a l Cod e M in M ax M in M ax A 3 2 9. 6 0 3 3 0 .2 5 1 2 .9 7 6 1 3 .0 0 1 B 2 0 .9 5 2 1.45 0 . 82 4 0 .8 4 4 C 1 2 .8 0 1 3.20 0 . 50 3 0 .5 1 9 D 1 .9 5 2 .4 5 0 . 76 7 0 .0 9 6 E 9 8 .0 0 1 0 2 .0 0 3 . 85 8 4 .0 1 5 F n /a 1 8.40 n /a 0 .7 2 4 G 1 4 .5 0 1 7.10 0 . 57 0 0 .6 7 3 H 1 2 .4 0 1 4.40 0 . 48 8 0 .5 6 6 www.irf.com 25 IRS2109/IRS21094(S)PbF Tape & Reel 14-lead SOIC LOAD ED TA PE FEED DIRECTION B A H D F C N OTE : CO NTROLLING D IMENSION IN M M E G C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N M etr ic Im p e r i a l Cod e M in M ax M in M ax A 7 .9 0 8 .1 0 0 . 31 1 0 .3 1 8 B 3 .9 0 4 .1 0 0 . 15 3 0 .1 6 1 C 1 5 .7 0 1 6.30 0 . 61 8 0 .6 4 1 D 7 .4 0 7 .6 0 0 . 29 1 0 .2 9 9 E 6 .4 0 6 .6 0 0 . 25 2 0 .2 6 0 F 9 .4 0 9 .6 0 0 . 37 0 0 .3 7 8 G 1 .5 0 n/ a 0 . 05 9 n/ a H 1 .5 0 1 .6 0 0 . 05 9 0 .0 6 2 F D C E B A G H R E E L D IM E N S I O N S F O R 1 4 S O IC N M etr ic Im p e r i a l Cod e M in M ax M in M ax A 3 2 9. 6 0 3 3 0 .2 5 1 2 .9 7 6 1 3 .0 0 1 B 2 0 .9 5 2 1.45 0 . 82 4 0 .8 4 4 C 1 2 .8 0 1 3.20 0 . 50 3 0 .5 1 9 D 1 .9 5 2 .4 5 0 . 76 7 0 .0 9 6 E 9 8 .0 0 1 0 2 .0 0 3 . 85 8 4 .0 1 5 F n /a 2 2.40 n /a 0 .8 8 1 G 1 8 .5 0 2 1.10 0 . 72 8 0 .8 3 0 H 1 6 .4 0 1 8.40 0 . 64 5 0 .7 2 4 www.irf.com 26 IRS2109/IRS21094(S)PbF LEADFREE PART MARKING INFORMATION Part number IRxxxxxx S YWW? ?XXXX Lot Code (Prod mode - 4 digit SPN code) IR logo Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-Lead PDIP IRS2109PbF 8-Lead SOIC IRS2109SPbF 8-Lead SOIC Tape & Reel IRS2109STRPbF 14-Lead PDIP IRS21094PbF 14-Lead SOIC IRS21094SPbF 14-Lead SOIC Tape & Reel IRS21094STRPbF The SOIC-8 is MSL2 qualified. The SOIC-14 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 Data and specifications subject to change without notice. 12/4/2006 www.irf.com 27
IRS2109PBF 价格&库存

很抱歉,暂时无法提供与“IRS2109PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货