PRELIMINARY
Data Sheet No. PD60249 revB
IRS2110(-1,-2,S)PbF IRS2113(-1,-2,S)PbF
Features
HIGH AND LOW SIDE DRIVER
• Floating channel designed for bootstrap operation Product Summary • Fully operational to +500 V or +600 V VOFFSET (IRS2110) 500 V max. • Tolerant to negative transient voltage, dV/dt immune (IRS2113) 600 V max. • Gate drive supply range from 10 V to 20 V IO+/2 A/2 A • Undervoltage lockout for both channels • 3.3 V logic compatible VOUT 10 V - 20 V • Separate logic supply range from 3.3 V to 20 V ton/off (typ.) 130 ns & 120 ns • Logic and power ground ±5V offset • CMOS Schmitt-triggered inputs with pull-down Delay Matching (IRS2110) 10 ns max. • Cycle by cycle edge-triggered shutdown logic (IRS2113) 20 ns max. • Matched propagation delay for both channels Packages • Outputs in phase with inputs
Description
The IRS2110/IRS2113 are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 500 V or 600 V.
14-Lead PDIP IRS2110 and IRS2113
16-Lead PDIP (w/o leads 4 & 5) IRS2110-2 and IRS2113-2
14-Lead PDIP (w/o lead 4) IRS2110-1 and IRS2113-1
16-Lead SOIC IRS2110S and IRS2113S
Typical Connection
HO VDD HIN SD LIN VSS VCC VDD HIN SD LIN VSS VCC COM LO VB VS
up to 500 V or 600 V
TO LOAD
(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figs. 28 through 35.
Symbol
VB VS VHO VCC VLO VDD VSS VIN dVs/dt PD RTHJA TJ TS TL
Definition
High side floating supply voltage High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage Low side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage (HIN, LIN, & SD) Allowable offset supply voltage transient (Fig. 2) Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (14 lead DIP) (16 lead SOIC) (14 lead DIP) (16 lead SOIC) (IRS2110) (IRS2113)
Min.
-0.3 -0.3 V B - 20 VS - 0.3 -0.3 -0.3 -0.3 VCC - 20 VSS - 0.3 — — — — — — -55 —
Max.
520 (Note 1) 620 (Note 1) VB + 0.3 VB + 0.3 20 (Note 1) VCC + 0.3 VSS+20 (Note 1) VCC + 0.3 VDD + 0.3 50 1.6 1.25 75 100 150 150 300
Units
V
V/ns W
°C/W
°C
Note 1: All supplies are fully tested at 25 V, and an internal 20 V clamp exists for each supply.
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation, the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at a 15 V differential. Typical ratings at other bias conditions are shown in Figs. 36 and 37.
Symbol
VB VS VHO VCC VLO VDD VSS VIN TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage Low side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage (HIN, LIN & SD) Ambient temperature (IRS2110) (IRS2113)
Min.
V S + 10 Note 2 Note 2 VS 10 0 VSS + 3 -5 (Note 3) VSS -40
Max.
V S + 20 500 600 VB 20 VCC VSS + 20 5 VDD 125
Units
V
°C
Note 2: Logic operational for VS of -4 V to +500 V. Logic state held for VS of -4 V to -VBS. (Refer to the Design Tip DT97-3) Note 3: When VDD < 5 V, the minimum VSS offset is limited to -VDD.
www.irf.com
2
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Dynamic Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15 V, CL = 1000 pF, TA = 25 °C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3.
Symbol
ton toff tsd tr tf MT
Definition
Turn-on propagation delay Turn-off propagation delay Shutdown propagation delay Turn-on rise time Turn-off fall time Delay matching, HS & LS turn-on/off (IRS2110) (IRS2113)
Figure Min. Typ. Max. Units Test Conditions
7 8 9 10 11 — — — — — — — — — 130 120 130 25 17 — — 160 150 160 35 25 10 20 VS = 0 V VS = 500 V/600 V
ns
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15 V, TA = 25 °C and VSS = COM unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN, and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IQDD IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUVIO+ IO-
Definition
Logic “1” input voltage Logic “0” input voltage High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Quiescent VDD supply current Logic “1” input bias current Logic “0” input bias current VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current Output low short circuit pulsed current
Figure Min. Typ. Max. Units Test Conditions
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 9.5 — — — — — — — — — 7.5 7.0 7.4 7.0 2.0 2.0 — — — — — 125 180 15 20 — 8.6 8.2 8.5 8.2 2.5 2.5 — 6.0 1.2 0.15 50 230 340 30 40 1.0 9.7 9.4 V 9.6 9.4 — A — VO = 0 V, VIN = VDD PW ≤ 10 µs VO = 15 V, VIN = 0V PW ≤ 10 µs VIN = VDD VIN = 0 V µA VIN = 0 V or VDD V IO = 0 A IO = 20 mA VB=VS = 500 V/600 V
www.irf.com
3
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Functional Block Diagram
VB VDD RQ S HIN
HV LEVEL SHIFT
UV DETECT PULSE FILTER
R R S
Q HO
VDD /VCC LEVEL SHIFT
PULSE GEN
VS
SD UV DETECT
VCC VDD /VCC LEVEL SHIFT
LIN RQ VSS S
LO DELAY COM
Lead Definitions
Symbol Description
VDD HIN SD LIN VSS VB HO VS VCC LO COM Logic supply Logic input for high side gate driver output (HO), in phase Logic input for shutdown Logic input for low side gate driver output (LO), in phase Logic ground High side floating supply High side gate drive output High side floating supply return Low side supply Low side gate drive output Low side return
www.irf.com
4
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Lead Assignments
14 Lead PDIP
16 Lead SOIC (Wide Body)
IRS2110/IRS2113
IRS2110S/IRS2113S
14 Lead PDIP w/o lead 4
16 Lead PDIP w/o leads 4 & 5
IRS2110-1/IRS2113-1 Part Number
IRS2110-2/IRS2113-2
www.irf.com
5
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Vcc =15V 10KF6 10 µF 0.1 µF 9 10 11 12 2 IRF820 3 6 5 7 1 OUTPUT MONITOR 10KF6 0.1 µF 200 µH + 10KF6 100µF HV = 10 to 500V/600V
HO
dVS >50 V/ns dt
13
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
Vcc =15V VB + 10 15V µF VS (0 to 500V/600V) 10 µF
10 µF
0.1 µF 9 3 6 5 7 1 CL 13 2 CL 10 11 12
0.1 µF HO LO
HIN LIN
ton
50%
50%
tr 90%
toff 90%
tf
HIN SD LIN
HO LO
10%
10%
Figure 3. Switching Time Test Circuit
Figure 4. Switching Time Waveform Definition
HIN LIN
50%
50%
50%
SD
tsd
LO
HO
10%
HO LO
90%
MT 90% MT
LO
Figure 5. Shutdown Waveform Definitions
HO
Figure 6. Delay Matching Waveform Definitions
www.irf.com
6
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
250
250 Turn-on Delay Time (ns Turn-On Delay Time (ns) ) 200 150 100 50 0 10 12 14 16 18 20 V B IAS Supply V oltage (V )
Max.
Turn-On Delay Time (ns) Turn-on Delay Time (ns
200
150
Max.
100
Typ.
Typ.
50
0 -50 -25 0 25 50 o 75 100 125
Temperature( C)
Figure 7A. Turn-On Time vs. Temperature
Figure 7B. Turn-On Time vs. Supply Voltage
250
M ax.
250 Turn-Off Time Turn-Off Time (ns)(ns) 200 150
Max.
Turn-On Delay Time (ns)
200
Typ.
150 100 50 0 0 2 4 6 8 10 12 14 16 18 20 V DD Supply Voltage (V) Figure 7C. Turn-On Time vs. V DD S upply Voltage
250
100
Typ.
50 0 -50
-25
0
25
50
o
75
100
125
Temperature( C) Figure 8A. Turn-Off Time vs. Temperature 250
Turn-OffDelay Time (ns) (ns) Turn-Off Delay Time
M ax.
Turn-Off Turn-Off Time (ns) (ns)
200
Max.
200 150
Typ.
150
Typ.
100 50 0 10 12 14 16 18 20 V BIAS Supply Voltage (V)
100 50 0
Figure 8B. Turn-Off Time vs. Supply Voltage
6 8 10 12 14 16 18 20 VDD Supply Voltage (V) V S l V lt (V) Figure 8C. Turn-Off Time vs. VDD Supply Voltage
0
2
4
www.irf.com
7
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
250
SD Propagation Delay (ns) SD Propagation Delay (ns SD Propagation Delay (ns) SD Propagation delay (ns
250 200 150
Typ. Max.
200 150 100 50 0 -50
Max.
100 50 0 10 12 14 16 18 20 V BIAS Supply Voltage (V)
Figure 9B. Shutdown Time vs. Supply Voltage
100
Typ.
-25
0
25
50
75
100
125
Temperature (oC) Figure 9A. Shutdown Time vs. Temperature 250
M ax.
Shutdown Delay Time (ns)
Turn-On Rise Time (ns)
200 150
Typ.
80
60
100 50 0 0 2 4 8 10 12 14 16 18 20 V DD Supply Voltage (V) 6
40
M ax. Typ.
20
0 -50 -25 0 25 50 75 100 125
Temperature (o C ) Figure 10A. Turn-On Rise Time vs. Temperature
50
Figure 9C. Shutdown Time vs. V DD S upply Voltage
100
Turn-On Rise Time (ns) Turn-On Rise Time (ns)
80
Turn-Off Fall Time (ns)
12 14 16 18 20
40
60
Max.
Turn-Off Fall Time (ns)
30
Max.
40
Typ.
20
Typ.
20
10
0 10 VBIAS Supply Voltage (V)
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 10B. Turn-On Rise Time vs. Voltage
Figure 11A. Turn-Off Fall Time vs. Temperature
www.irf.com
8
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
50
15.0
Turn-Off FallFall Time (ns) Turn-Off Time (ns)
40
Logic “1” Input Threshold (V) Logic "1" Input Threshold (V)
12 14 16 18 20
12.0
Max Min.
30
9.0
20
Max.
6.0
10
Typ.
3.0
0 10 VBIAS Supply Voltage (V)
0.0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 11B. Turn-Off Fall Time vs. Voltage
15 12 Max. 9 6 3 0 0 2 4 6 8 10 12 14 16 18 20
VDD Logic Supply Voltage (V)
Figure 12A. Logic “1” Input Threshold vs. Temperature
LogicLogic "0" Input Threshold (V) “0” Input Threshold (V)
15.0
Logic Logic "Input Threshold (V) (V) “1” 1" Input Threshold
12.0
9.0
6.0
Max. Min.
3.0
0.0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 12B. Logic “1” Input Threshold vs. Voltage
15
Logic Input Threshold Logic “0”"0" Input Threshold (V) (V)
Figure 13A. Logic “0” Input Threshold vs. Temperature
High Level Output Voltage (V) High Level Output Voltage (V)
5.00
12 9 Min. 6 3 0 0 2 4 6 8 10 12 14 16 18 20
VDD Logic Supply Voltage (V)
4.00
3.00
2.00
Max.
1.00
0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 13B. Logic “0” Input Threshold vs. Voltage
Figure 14A. High Level Output vs. Temperature
www.irf.com
9
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
5.00
0.20
Low Level Outout Voltage (V)
High Level Ouput Voltage (V)
4.00
0.16
Max.
3.00
0.12 0.08 0.04 0.00 -50
2.00
Max.
1.00
0.00 10 12 14 16 18 20
-25
VBIAS Supply Voltage (V)
0 25 50 75 Temperature (oC)
100
125
Figure 14B. High Level Output vs. Voltage
Low Level Outout Voltage (V)
0.20 0.16 0.12 0.08 0.04 0.00 10 12 14 16 18 20
Figure 15A. Low Level Output vs. Temperature
Offset Supply Leakage Current (µA)
500
Max.
400
300
200
100
Max.
0 -50 -25 0 25 50 75 100 125
VCC Supply Voltage (V)
Temperature (oC)
Figure 15B. Low Level Output vs. Supply Voltage
Offset Supply Leakage Current (µA)
500
Figure 16A. Offset Supply Current vs. Temperature
500
VBS Supply Current (µA)
100 200 300 400 500 600
400
400
300
300
Max.
200
200
Typ.
100
Max.
100
0 0
0 -50 -25 0 25 50 75 100 125
VB Boost Voltage (V)
Temperature (oC)
Figure 16B. Offset Supply Current vs. Voltage
Figure 17A. VBS Supply Current vs. Temperature
www.irf.com
10
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
500
625
VBS Supply Current (µA) VBS Supply Current (µA)
400
VCC Supply Current ((µA) VCC Supply Current µA)
500
300
375
Max.
200
Max.
250
Typ.
100
Typ.
125
0 10 12 14 16 18 20
0 -50 -25 0 25 50 75 100 125
VBS Floating Supply Voltage (V) Figure 17B. VBS Supply Current vs. Voltage
625
Temperature (oC) Figure 18A. VCC Supply Current vs. Temperature
100
VCC Supply Current ((µA) VCC Supply Current µA)
500
VDD Supply Current (µA)
12 14 16 18 20
80
375
60
250
Max.
40
Max.
125
Typ.
20
Typ.
0 10
0 -50 -25 0 25 50 75 100 125
VCC Fixed Supply Voltage (V) Figure 18B. VCC Supply Current vs. Voltage
Temperature (oC) Figure 19A. VDD Supply Current vs. Temperature
Logic “1” Input Bias Current (µA)
100
VDD Supply Current VDD Supply Current (µA) (µA)
60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20 VDD Logic Supply Voltage (V)
80
60
40
Max.
20
Typ.
0 -50 -25 0 25 50 75 100 125
Figure 19B. VDD Supply Current vs. V DD Voltage
Temperature (oC) Figure 20A. Logic “1” Input Current vs. Temperature
www.irf.com
11
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Logic “1”Logic “u”tInBuaBias CurrrretnµA)µ A) Inp 1 p it s C u en (t (
50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20
Logic “0” Input Bias Current (µ A)
60
5.00
4.00
3.00
2.00
1.00
Max.
0.00 -50 -25 0 25 50 75 100 125
VDD Logic Supply Voltage (V) Figure 20B. Logic “1” Input Current vs. V DD Voltage VBS U ndervoltage Lockout + ( V)
Temperature (oC) Figure 21A. Logic “0” Input Current vs. Temperature
11.0
Logic “0ogiIn0”utput Bas CCurrteµAt) (µ A) L ” c “ p In Bi ias urren ( n
5 4 3 2 1 0 0 2 4 6 8 10 12 14 16 18 20
VDD Logic Supply Voltage (V) Figure 21B. Logic “0” Input Current vs. V DD Voltage
10.0
Max.
9.0
Typ.
8.0
Min.
7.0
6.0 -50 -25 0 25 50 75 100 125
Temperature (oC) Figure 22. VBS Undervoltage (+) vs. Temperature
VBS U ndervoltage Loc kout - ( V)
VCC U nder voltage Loc kout + ( V)
11.0
11.0
10.0
Max.
10.0
Max.
9.0
9.0
Typ.
Typ.
8.0
8.0
Min.
7.0
Min.
7.0
6.0 -50 -25 0 25 50 75 100 125
6.0 -50 -25 0 25 50 75 100 125
Temperature (oC) Figure 23. VBS Undervoltage (-) vs. Temperature
Temperature (oC) Figure 24. VCC Undervoltage (+) vs. Temperature
www.irf.com
12
PDF created with pdfFactory trial version www.pdffactory.com
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
11.0
5.00
VCC U nder voltage Lockout - (V)
10.0
Max.
Output Ouout rcurceCurrrre(n)t ( A) Stp u So e Cu ent A
4.00
9.0
3.00
Typ. Min.
8.0
Typ.
2.00
7.0
Min.
1.00
6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Temperature (oC)
0.00 -50
-25
0
25
50
75
100
125
Temperature o Temperature (°C) ( C)
Figure 25. VCC Undervoltage (-) vs. Temperature
5.00 5.00
Figure 26A. Output Source Current vs. Temperature OutpOutpuSSnk Curreur(rAent (A) u t t iin k C nt )
Output Outout rcurceCurrrre(n)t ( A) S p u So e C u ent A
4.00
4.00
3.00
3.00
Typ. Min.
2.00
Typ.
2.00
1.00
Min.
1.00
0.00 10 12 14 16 18 20
0.00 -50
-25
0
25
50
75
100
125
VBIAS Supply Voltage (V) Figure 26B. Output Source Current vs. Voltage
5.00 150
Temperature (oC) Figure 27A. Output Sink Current vs. Temperature
320V
Junction Temperature (oC )
Outputt uSiink uCutr(rent (A) Ou p t S nk C rren A)
4.00
125
140V
100
3.00
75
10V
2.00
Typ.
50
1.00
Min.
25
0.00 10 12 14 16 18 20
0 1E+2
1E+3
1E+4
1E+5
1E+6
VBIAS Supply Voltage (V) Figure 27B. Output Sink Current vs. Voltage
Frequency (kHz) Figure 28. IRS2110/IRS2113 TJ vs. Frequency (IRFBC20) RGATE = 33 Ω , VCC = 15 V
www.irf.com
13
PDF created with pdfFactory trial version www.pdffactory.com
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
150
320V
150
320V
140V
Junction Temperature) (oC) p (
Junction Temperature (oC)
125
140V
125
100
100
10V
75
10V
75
50
50
25
25
0 1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (kHz) Figure 29. IRS2110/IRS2113 TJ vs. Frequency (IRFBC30) RGATE = 22 Ω, VCC = 15 V
150
320V 140V
0 1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (kHz) Figure 30. IRS2110/IRS2113 TJ vs. Frequency (IRFBC40) RGATE = 15 Ω, VCC = 15 V
150
320V 140V
Junction Temperature (oC)
125
10V
Junction Temperature (oC)
125
100
100
10V
75
75
50
50
25
25
0 1E+2
1E+3
1E+4
1E+5
1E+6
0 1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (kHz) Figure 31. IRS2110/IRS2113 TJ vs. Frequency (IRFPE50) RGATE = 10 Ω, VCC = 15 V
150
320V 140V
Frequency (kHz) Figure 32. IRS2110S/IRS2113S TJ vs. Frequency (IRFBC20) RGATE = 33 Ω, VCC = 15 V
150
320V 140V
Junction Temperature (oC)
125
Junction Temperature (oC)
125
10V
100
10V
100
75
75
50
50
25
25
0 1E+2
1E+3
1E+4
1E+5
1E+6
0 1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (kHz) Figure 33. IRS2110S/IRS2113S TJ vs. Frequency (IRFBC30) RGATE = 22 Ω, VCC = 15 V
Frequency (kHz) Figure 34. IRS2110S/IRS2113S TJ vs. Frequency (IRFBC40) RGATE = 15 Ω, VCC = 15 V
www.irf.com
14
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
150
320V 140V 10V
0.0
125
VS Offset Supply Voltage (V)
Junction Temperature (oC) p ()
-2.0
Typ.
100
-4.0
75
-6.0
50
25
-8.0
0 1E+2
-10.0
1E+3
1E+4
1E+5
1E+6
10
12
14
16
18
20
Frequency (kHz) Figure 35. IRS2110S/IRS2113S TJ vs. Frequency (IRFPE50) RGATE = 10 Ω, VCC = 15 V
VBS Floating Supply Voltage (V) Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage
VSS Logic Supply Offset Voltage (V)
20.0
16.0
12.0
8.0
Typ.
4.0
0.0 10 12 14 16 18 20
VCC Fixed Supply Voltage (V) Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage
www.irf.com
15
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Case Outlines
14-Lead PDIP
01-6010 01-3002 03 (MS-001AC)
14-Lead PDIP w/o Lead 4
www.irf.com
01-6010 01-3008 02 (MS-001AC)
16
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
16 Lead PDIP w/o Leads 4 & 5
01-6015 01-3010 02
16-Lead SOIC (wide body)
www.irf.com
01 6015 01-3014 03 (MS-013AA)
17
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Tape & Reel 16-Lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D F C
N OT E : CO NTROLLING D IM ENSION IN MM
E G
C A R R I E R T A P E D IM E N S I O N F O R 1 6 S O IC W M e tr ic Im p e ri al Co d e M in M ax M in M ax A 1 1 .9 0 1 2. 10 0. 46 8 0 .4 7 6 B 3 .9 0 4 .1 0 0. 15 3 0 .1 6 1 C 1 5 .7 0 1 6. 30 0. 61 8 0 .6 4 1 D 7 .4 0 7 .6 0 0. 29 1 0 .2 9 9 E 1 0 .8 0 1 1. 00 0. 42 5 0 .4 3 3 F 1 0 .6 0 1 0. 80 0. 41 7 0 .4 2 5 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1 .6 0 0. 05 9 0 .0 6 2
F
D C E B A
G
H
R E E L D IM E N S I O N S F O R 1 6 S O IC W M e tr ic Im p e ri al Co d e M in M ax M in M ax A 32 9. 60 3 3 0 .2 5 1 2 .9 7 6 1 3 .0 0 1 B 2 0 .9 5 2 1. 45 0. 82 4 0 .8 4 4 C 1 2 .8 0 1 3. 20 0. 50 3 0 .5 1 9 D 1 .9 5 2 .4 5 0. 76 7 0 .0 9 6 E 9 8 .0 0 1 0 2 .0 0 3. 85 8 4 .0 1 5 F n /a 2 2. 40 n /a 0 .8 8 1 G 1 8 .5 0 2 1. 10 0. 72 8 0 .8 3 0 H 1 6 .4 0 1 8. 40 0. 64 5 0 .7 2 4
www.irf.com
18
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
LEADFREE PART MARKING INFORMATION
Part number
S IRxxxxxx
Date code
YWW? ?XXXX
IR logo
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Lot Code (Prod mode - 4 digit SPN code)
Assembly site code Per SCOP 200-002
ORDER INFORMATION
14-Lead PDIP IRS2110PbF 14-Lead PDIP IRS2110-1PbF 14-Lead PDIP IRS2113PbF 14-Lead PDIP IRS2113-1PbF 16-Lead PDIP IRS2110-2PbF 16-Lead PDIP IRS2113-2PbF 16-Lead SOIC IRS2110SPbF 16-Lead SOIC IRS2113SPbF 16-Lead SOIC Tape & Reel IRS2110STRPbF 16-Lead SOIC Tape & Reel IRS2113STRPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice 5/11/2006
www.irf.com
19