Data Sheet No. PD60253
IRS2111(S)PbF
HALF-BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt • Gate drive supply range from 10 V to 20 V • Undervoltage lockout for both channels • CMOS Schmitt-triggered inputs with pull-down • Matched propagation delay for both channels • Internally set deadtime • High side output in phase with input
immune
Product Summary
VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600 V max. 200 mA / 420 mA 10 V - 20 V 750 ns & 150 ns 650 ns
Description
The IRS2111 is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels designed for half-bridge applications. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic input is compatible with standard CMOS outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Internal deadtime is provided to avoid shoot-through in the output half-bridge. The floating channel can be used to drive an Nchannel power MOSFET or IGBT in the high side configuration which operates up to 600 V.
Packages
8-Lead PDIP IRS2111PbF
8-Lead SOIC IRS21111SPbF
Typical Connection
up to 600 V VCC
VCC
IN
VB HO VS
TO LOAD
IN COM LO
(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IRS2111(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figs. 7 through 10.
Symbol
VB VS VHO VCC VLO VIN dVs/dt PD RthJA TJ TS TL
Definition
High side floating supply voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Allowable offset supply voltage transient (Fig. 2) Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 Lead PDIP) (8 lead SOIC) (8 lead PDIP) (8 lead SOIC)
Min.
-0.3 V B - 25 VS - 0.3 -0.3 -0.3 -0.3 — — — — — — -55 —
Max.
625 (Note 1) VB + 0.3 VB + 0.3 25 (Note 1) VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300
Units
V
V/ns W °C/W
°C
Note 1: All supplies are fully tested at 25 V, and an internal 20 V clamp exists for each supply
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at a 15 V differential.
Symbol
VB VS VHO VCC VLO VIN TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Ambient temperature
Min.
VS + 10 Note 2 VS 10 0 0 -40
Max.
VS + 20 600 VB 20 VCC VCC 125
Units
V
°C
Note 2: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
www.irf.com
2
IRS2111(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, CL = 1000 pF and TA = 25 °C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3.
Symbol
ton toff tr tf DT MT
Definition
Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time Deadtime, LS turn-off to HS turn-on & HS turn-off to LS turn-on Delay matching, HS & LS turn-on/off
Min. Typ. Max. Units Test Conditions
550 — — — 480 — 750 150 75 35 650 30 950 180 130 65 820 — ns VS = 0 V VS = 600 V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
VIH
Definition
Logic “1” input voltage for HO & logic “0” for LO
Min. Typ. Max. Units Test Conditions
6.4 9.5 12.6 — — — — — — — 0.05 0.02 — 50 70 30 — 8.6 8.2 8.6 8.2 290 — — — 3.8 6.0 8.3 0.2 0.1 50 100 180 50 1.0 9.6 9.2 9.6 9.2 — mA VO = 0 V, VIN = VCC PW ≤ 10 µs VO = 15 V, VIN = 0 V PW ≤ 10 µs V µA VIN = 0 V or VCC VIN = VCC VIN = 0 V mV V VCC = 10 V VCC = 15 V VCC = 20 V VCC = 10 V VCC = 15 V VCC = 20 V IO = 2 mA VB = VS = 600 V
VIL VOH VOL ILK IQBS IQCC IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUVIO+ IO-
Logic “0” input voltage for HO & logic “1” for LO High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current
— — — — — — — — — 7.6 7.2 7.6 7.2 200
Output low short circuit pulsed current
420
600
—
www.irf.com
3
IRS2111(S)PbF
Functional Block Diagram
VB UV DETECT DEAD TIME PULSE GEN IN UV DETECT
HV LEVEL SHIFT
R Q R S VS HO
PULSE FILTER
VCC
LO DEAD TIME COM
Lead Definitions
Symbol Description
IN VB HO VS VCC LO COM Logic input for high side and low side gate driver outputs (HO & LO), in phase with HO High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return
Lead Assignments
8 Lead DIP
8 Lead SOIC
IRS2111 Part Number
www.irf.com
IRS2111S
4
IRS2111(S)PbF
IN
HO
LO
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
IN(LO)
50% 50%
IN(HO)
ton tr 90% toff 90% tf
LO HO
Figure 3. Switching Time Test Circuit
10%
10%
Figure 4. Switching Time Waveform Definition
50%
50%
IN (LO)
50% 50%
IN
IN (HO)
90%
LO
HO
10%
HO LO
90%
10% DT
MT
MT 90%
10%
Figure 5. Deadtime Waveform Definitions
LO
HO
Figure 6. Delay Matching Waveform Definitions
www.irf.com
5
IRS2111(S)PbF
1500
Turn-On Delay Time (ns)
M ax. Typ. Mi n.
1500
Turn-On Delay Time (ns)
1250 1000 750 500 250 0 -50
1250 Max. 1000 750 500 250 0 Typ. Min.
-25
0
25
50
75
100 125
10
12
14
16
18
20
Temperature ( oC)
Figure 7A Turn-On Time vs Temperature
V BIA S Supply Voltage (V)
Figure 7B Turn-On Time vs Voltage
400 Turn-Off Delay Time (ns) 350 300 250 200 150 100 50 0 -50 -25 0 25 50 75 Temperature (°C) 100 125
Typ Max
400 Turn-Off Delay Time (ns)) 350 300 250 200 150 100 50 0 10 12 14 16 18 20
Typ Max
V BIAS Supply Voltage
Figure 8A Turn-Off Time vs Temperature Figure 8B Turn-Off Time vs Voltage
400
Turn-On Rise Time (ns)
300 250 200 150 100 50 0 -50 -25 0 25 50
Typ Max
Turn-On Rise Time (ns)
350
400 350 300 250 200 150 100 50 0
Max
Typ
10 75 100 125 Temperature (°C)
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 9B Turn-On Rise Time vs Voltage
Figure 9A Turn-On Rise Time vs Temperature
www.irf.com
6
IRS2111(S)PbF
200
200
Turn-Off Fall Time (ns)
100
Turn-Off Fall Time (ns)
150
150
Max
100
Max
50
Typ
50
Typ
0 -50 -25 0 25 50 75 Temperature (°C) 100 125
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 10A Turn-Off Fall Time vs Temperature
Figure 10B Turn-Off Fall Time vs Voltage
1250 1000 750 500 250 0 -50
M ax.
1250 1000 Deadtime (ns) 750 500 250 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 11B Deadtime vs Voltage
15
Deadtime (ns)
Max. Typ. Min.
Typ. Mi n.
Temperature (oC)
Figure 11A Deadtime vs Temperature
Logic “1” Input Threshold (V)
15 12
Min
Logic “1” Input Threshold (V)
12
Min
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
0 10
3
3
6
6
9
9
12
14
16
18
20
Figure 12A Logic “I” Input voltage for HO & Logic “0” for LO vs Temperature
Figure 12B Logic “I” Input voltage for HO & Logic “0” for LO vs Voltage
www.irf.com
7
IRS2111(S)PbF
Logic “0” Input Threshold (V) Logic “0” Input Threshold (V)
15 12 9
M ax
9
12
15
Max
6 3 0 -50 -25 0 25 50 Temperature (°C) 75 100 125
0 10
3
6
12
14
16
18
20
VCC Logic Supply Voltage (V)
Figure 13A Logic “0” Input voltage for HO & Logic “I” for LO vs Temperature
Figure 13B Logic “0” Input voltage for HO & Logic “I” for LO vs Voltage
High Level Output Voltage (V)
High Level Output Voltage (V)
1.0 0.8 0.6 0.4 0.2
Max. Typ.
1.0 0.8 0.6 0.4 0.2 0.0 10 12 14 16 18 20 V cc Supply Voltage (V) Figure 14B. High Level Output vs. Supply Voltage
Max. Typ.
0.0 -50
-25
0
25
50
o
75
100
125
Temperature ( C) Figure 14A. High Level Output vs. Tem perature Low Level Output Voltage (V) Low Level Output Voltage (V) 0.5 0.4 0.3 0.2
Max.
0.5 0.4 0.3 0.2 0.1 0 10 12 14 16 18 20
Max. Typ.
0.1
Typ.
0 -50
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 15A. Low Level Output vs. Temperature
V cc Supply Voltage (V)
Figure 15B. Low Level Output vs. Voltage
www.irf.com
8
IRS2111(S)PbF
Offset Supply Current (µA) Offset Supply Current (µA)
500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 Max. 500 400 300 200 M ax . 100 0 0 100 200 300 400 500 600
Temperature (°C)
V B B oos t V oltage (v)
Figure 16A Offset Supply Current vs Temperature
200
Figure 16B Offset Supply Current vs Voltage
200
VBS Supply Current (µA)
VBS Supply Current (µA)
150 Max. 100 Typ. 50
150 Max. 100 Typ. 50
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
0 10 12 14 16 18 20
VBS Floating Supply Voltage (V)
Figure 17A VBS Supply Current vs Temperature
VCC Supply Current (µA)
500 400 300 Max . 200 100 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Typ.
Figure 17B VBS Supply Current vs Voltage
500
VCC Supply Current (µA)
400 300 200 100
Typ Max
0 10 12 14 16 18 20
VCC Fixed Supply Voltage (V)
Figure 18A VCC Supply Current vs Temperature
Figure 18B VCC Supply Current vs Voltage
www.irf.com
9
IRS2111(S)PbF
Logic “1” Input Bias Current (µA) Logic “1” Input Bias Current (µA)
120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Max. Typ.
120 100 80 60 40 20 0 10 12 14 16 18 20 VCC Supply Voltage (V) Typ. Max.
Figure 19A Logic “1” Input Current vs. Temperature
Logic “0” Input Bias Current (µA) Logic “0” Input Bias Current (µA)
5 4 3 2
Figure 19B Logic “1” Input Current vs. VCC Voltage
5 4 3 2 1 0 10 12 14 16 18 20 Max.
Max.
1 0 -50 -25 0 25 50 75 100 125
Temperature (°C)
VCC Supply Voltage (V)
Figure 20B. Logic “0” Input Current vs. VCC Voltage
12 V B S U V LO Threshol -(V ) d 11 10 9 8 7 6
Figure 20A. Logic “0” Input Current vs. Temperature
12 VBS UVLO Threshold +(V) 11 Max . 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (°C) Min. Typ.
Max. Typ.
Min.
-50 -25 0 25 50 75 100 125
Temperature(°C)
Figure 21 VBS Undervoltage Threshold (+) vs. Temperature
Figure 22 VBS Undervoltage Threshold (-) vs. Temperature
www.irf.com
10
IRS2111(S)PbF
11 Vcc Undervoltage Lockout +(V) 10 9 8 7 6 -50
VCC Under voltage Loc kout- ( V)
11 10
Max. Typ. Min.
Max.
9
Typ.
8
Min.
7 6 -50 -25 0 25 50 75 100 125 Temperature (°C)
-25
0
25
50
75
100
125
Temperature (°C)
Figure 23 VCC Undervoltage (-) vs Temperature
mA Output Source Current(µΑ) ( mA Output Source Current(µΑ) (
Figure 24 VCC Undervoltage (-) vs Temperature
500 400 300
Min.
500 400 300
Typ.
Typ.
200 100 0 -50 -25 0 25 50 75 100 125 Temperature (oC)
200 100 0 10 12 14 16 18 20 V BIAS Supply Voltage (V)
Figure 25B Output Source Current vs Voltage
Min.
Figure 25A Output Source Current vs Temperature
900
m Output Sink Current (( Α)) µA mA Output Sink Current(µΑ)) (
900 750 600 450 300 150 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature ( oC) V BIAS Supply Voltage (V)
Figure 26B Output Sink Current vs Voltage Typ. Min.
750 600 450 300 150 0
Typ. Min.
Figure 26A Output Sink Current vs Temperature
www.irf.com
11
PDF created with pdfFactory trial version www.pdffactory.com
IRS2111(S)PbF
Junction Temperature(°C)
150 125 100 75 50 25 0 1E+2
320 V
Junction Temperature(°C)
150 125 100
320 V 160 V
160 V 30 V
30 V 75 50 25 0 1E+2
1E+3
1E+4
Frequency (kHz)
1E+5
1E+6
1E+3
1E+4
Frequency (kHz)
1E+5
1E+6
Figure 27. IR2111 TJ vs. Frequency (IRFBC20) RGATE = 33 Ω, VCC = 15 V
Figure 28. IR2111 TJ vs. Frequency (IRFBC30) RGATE = 22 Ω, VCC = 15 V
150
Junction Temperature (oC)
320 V
160 V
Junction Temperature(°C)
150 125 100 75 50 25 0 1E+2
320 V 160 V 30 V
125 100 75 50 25 0 1E+2
30V
1E+3
1E+4
Frequency (kHz)
1E+5
1E+6
1E+3
1E+4
Frequency (kHz)
1E+5
1E+6
Figure 29. IR2111 TJ vs. Frequency (IRFBC40) RGATE = 15 Ω, VCC = 15 V
Figure 30. IR2111 TJ vs. Frequency (IRFPC50) RGATE = 10 Ω, VCC = 15 V
www.irf.com
12
IRS2111(S)PbF
320 V 150
Junction Temperature (oC)
320 V 140 V 160 V
Junction Temperature (oC)
150 125 100 75 50 25 0 1E+2 30 V
125 100 75 50 25 0 1E+2 30 V
1E+3
1E+4
1E+5
1E+6
1E+3
1E+4
1E+5
1E+6
Frequency (kHz)
Frequency (kHz)
Figure 31. IR2111S TJ vs. Frequency (IRFBC20) RGATE = 33 Ω, VCC = 15 V
Figure 32. IR2111S TJ vs. Frequency (IRFBC30) RGATE = 22 Ω, VCC = 15 V
150
Junction Temperature (oC)
320 V 140 V 30 V
Junction Temperature (oC)
320 V 140 V 150 125 100 75 50 25 0 1E+2
30 V
125 100 75 50 25 0 1E+2
1E+3
1E+4
1E+5
1E+6
1E+3
1E+4
1E+5
1E+6
Frequency (kHz)
Frequency (kHz)
Figure 33. IR2111S TJ vs. Frequency (IRFBC40) RGATE = 15 Ω, VCC = 15 V
Figure 34. IR2111S TJ vs. Frequency (IRFPC50) RGATE = 10 Ω, VCC = 15 V
www.irf.com
13
IRS2111(S)PbF
Case outlines
8-Lead PDIP
D A 5 B
FOOTPRINT 8X 0.72 [.028]
01-6014 01-3003 01 (MS-001AB)
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
DIM A b c D
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
E
6.46 [.255]
1
2
3
4
e e1 H K L
8X 1.78 [.070]
.050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e e1
3X 1.27 [.050]
y
A C 0.10 [.004] y
K x 45°
8X b 0.25 [.010]
NOTES:
A1 CAB
8X L 7
8X c
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8-Lead SOIC
www.irf.com
01-6027 01-0021 11 (MS-012AA)
14
IRS2111(S)PbF
Tape & Reel 8-lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D F C
N OT E : CO NTROLLING D IM ENSION IN MM
E G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 11 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5.5 5 0. 21 4 0 .2 18 E 6 .3 0 6.5 0 0. 24 8 0 .2 55 F 5 .1 0 5.3 0 0. 20 0 0 .2 08 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62
F
D C E B A
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 14 .5 0 1 7. 10 0. 57 0 0 .6 73 H 12 .4 0 1 4. 40 0. 48 8 0 .5 66
www.irf.com
15
IRS2111(S)PbF
LEADFREE PART MARKING INFORMATION
Part number
IRSxxxx YWW? ?XXXX
Lot Code (Prod mode - 4 digit SPN code) IR logo
Date code
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Assembly site code Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2111PbF 8-Lead SOIC IRS2111SPbF 8-Lead SOIC Tape & Reel IRS2111STRPbF
The SOIC-8 is MSL2 qualified. The SOIC-14 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 6/14/2006
www.irf.com
16
很抱歉,暂时无法提供与“IRS2111PBF”相匹配的价格&库存,您可以联系我们找货
免费人工找货