Data Sheet No. PD60251
IRS2112(-1,-2,S)PbF
Features
• • • • • • • • • • • • •
HIGH AND LOW SIDE DRIVER
Product Summary
VOFFSET IO+/VOUT ton/off (typ.) Delay Matching 600 V max. 200 mA / 440 mA 10 V - 20 V 135 ns & 105 ns 30 ns
Floating channel designed for bootstrap operation Fully operational to +600 V Tolerant to negative transient voltage, dV/dt immune Gate drive supply range from 10 V to 20 V Undervoltage lockout for both channels 3.3 V logic compatible Separate logic supply range from 3.3 V to 20 V Logic and power ground +/- 5 V offset CMOS Schmitt-triggered inputs with pull-down Cycle by cycle edge-triggered shutdown logic Matched propagation delay for both channels Outputs in phase with inputs RoHS compliant
Packages
14-Lead PDIP IRS2112 16-Lead PDIP (w/o leads 4 & 5) IRS2112-2
Description
The IRS2112 is a high voltage, high speed power MOSFET and IGBT driver with independent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable rug14-Lead PD IP gedized monolithic construction. Logic inputs are com(w/o lead 4) patible with standard CMOS or LSTTL outputs, down IRS2112-1 to 3.3 V logic. The output drivers feature a high pulse 16- Lead SOIC current buffer stage designed for minimum driver IRS2112S cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.
Typical Connection
HO V DD HIN SD LIN V SS V CC VDD HIN SD LIN VSS VCC COM LO VB VS
up to 600 V
TO LOAD
(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IRS2112(-1,-2,S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figs. 28 through 35.
Symbol
VB VS VHO VCC VLO VDD VSS VIN dVs/dt PD RTHJA TJ TS TL
Definition
High-side floating supply voltage High-side floating supply offset voltage High-side floating output voltage Low-side fixed supply voltage Low- side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage (HIN, LIN & SD) Allowable offset supply voltage transient (Fig. 2) Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (14 Lead DIP) (16 Lead SOIC) (14 Lead DIP) (16 Lead SOIC)
Min.
- 0.3 VB - 25 VS - 0.3 - 0.3 - 0.3 -0.3 VCC - 25 VSS - 0.3 — — — — — — -55 —
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VSS + 25 VCC + 0.3 VDD + 0.3 50 1.6 1.25 75 100 150 150 300
Units
V
V/ns W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15 V differential. Typical ratings at other bias conditions are shown in Figs. 36 and 37.
Symbol
VB VS VHO VCC VLO VDD VSS VIN TA
Definition
High-side floating supply absolute voltage High-side floating supply offset voltage High-side floating output voltage Low-side fixed supply voltage Low- side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage (HIN, LIN & SD) Ambient temperature
Min.
VS + 10 Note 1 VS 10 0 VSS + 3 -5 (Note 2) VSS -40
Max.
VS + 20 600 VB 20 VCC VSS + 20 5 VDD 125
Units
V
°C
Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: When VDD < 5 V, the minimum VSS offset is limited to -VDD.
www.irf.com
2
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
Dynamic Electrical Characteristics
VBIAS ( VCC , VBS, VDD ) = 15 V, CL = 1000 pF, TA = 25 °C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3.
Symbol
ton toff tsd tr tf MT
Definition
Turn-on propagation delay Turn-off propagation delay Shutdown propagation delay Turn-on rise time Turn-off fall time Delay matching, HS & LS Turn-on/off
Min. Typ. Max. Units Test Conditions
— — — — — — 135 130 130 75 35 — 180 160 160 130 65 30 VS = 600 V VS = 0 V
ns
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15 V, TA = 25 °C and VSS = COM unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN, and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IQDD IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUVIO+ IO-
Definition
Logic “1” input voltage Logic “0” input voltage High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Quiescent VDD supply current Logic “1” input bias current Logic “0” input bias current VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current Output low short circuit pulsed current
Min. Typ. Max. Units Test Conditions
9.5 — — — — — — — — — 7.4 7.0 7.6 7.2 200 420 — — 0.05 0.02 — 25 80 2.0 20 — 8.5 8.1 8.6 8.2 290 600 — 6.0 0.2 0.1 50 100 180 30 40 1.0 9.6 9.2 V 9.6 9.2 — mA — VO = 0 V, VIN = VDD PW ≤ 10 µs VO = 15 V, VIN = 0 V PW ≤ 10 µs µA VIN = VDD VIN = 0 V VIN = 0 V or VDD V IO = 2 mA VB = VS = 600 V
www.irf.com
3
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
Functional Block Diagram
VB VDD RQ S HIN
HV LEVEL SHIFT
UV DETECT PULSE FILTER
R R S
Q HO
VDD /VCC LEVEL SHIFT
PULSE GEN
VS
SD UV DETECT
VCC VDD /VCC LEVEL SHIFT
LIN RQ VSS S
LO DELAY COM
Lead Definitions
Symbol
VDD HIN SD LIN VSS VB HO VS VCC LO COM
Description
Logic supply Logic input for high-side gate driver output (HO), in phase Logic input for shutdown Logic input for low-side gate driver output (LO), in phase Logic ground High-side floating supply High-side gate drive output High-side floating supply return Low-side supply Low-side gate drive output Low-side return
www.irf.com
4
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
Lead Assignments
14 Lead PDIP
16 Lead SOIC (Wide Body)
IRS2112
IRS2112S
14 Lead PDIP w/o lead 4
16 Lead PDIP w/o leads 4 & 5
IRS2112-1 Part Number
IRS2112-2
www.irf.com
5
IRS2112(-1,-2,S)PbF
VCC = 15 V HV = 10 V to 600 V
10 k F6
HIN LIN
10 µF
0.1 µF 9 10 3 6 5 7 11 1 12
0.1 µF
200 µH
10 k F6
100 µF
SD
HO 10 k F6 OUTPUT MONITOR
dVs ct
HO LO
13
2 IRF820
Figure 1. Input/Output Timing Diagram
VCC = 15 V
Figure 2. Floating Supply Voltage Transient Test Circuit
HV = 10 V to 600 V
10 µF
0.1 µF 9 10 3 6 5 7 11 SD 12 1 CL
0.1 µF
10 µF
+ -
VB
15 V VS (0 V to 600 V)
HIN LIN
ton
50%
50%
HIN
HO LO CL
10 µF
tr 90%
toff 90%
tf
LIN
13
2
HO LO
10%
10%
Figure 3. Switching Time Test Circuit
Figure 4. Switching Time Waveform Definition
HIN LIN
50%
50%
50%
SD
tsd
LO
HO
10%
HO LO
90%
MT 90% MT
LO
Figure 5. Shutdown Waveform Definitions
HO
Figure 6. Delay Matching Waveform Definitions
www.irf.com
6
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
T u rn- On Delay Tim e ( ns) .
Tu r n- On Delay Tim e ( ns ) .
250 200 150 100 50 0 -50
M ax.
250
M ax
200 150 100 50 0
T yp.
Typ.
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature(oC)
V CC / V BS Supply V oltage (V )
Figure 7A. Turn-On Propagation Delay Time vs. Temperature
T ur n-O n Del ay T im e ( ns ) . 400
M ax.
Figure 7B. Turn-On Propagation Delay Time vs. VCC/VBS Supply Voltage
250 Tu r n- O ff Tim e ( ns ) 200 150 100
Typ .
300
200
Typ.
M ax.
100
50 0 - 50
0 0 2 4 6 8 10 12 14 16 18 20
-25
0
25
50
75
100
125
V DD Supply V oltage (V )
Temperature(oC)
Figure 7C. Turn-On Propagation Delay Time vs. VDD S upply Voltage
250 Tu r n- O ff T im e ( ns ) 200 150
Typ. M ax.
Figure 8A. Turn-Off Propagation Delay Time vs. Temperature
400 Tur n-O ff Delay Tim e ( ns )
M ax .
300
200
T yp.
100 50 0 10 12 14 16 18 20
100
0 0 2 4 6 8 10 12 14 16 18 20
V CC/V B S Supply V oltage (V )
V DD Supply V oltage (V )
Figure 8B. Turn-Off Propagation Delay Time vs. VCC/VBS Supply Voltage
Figure 8C. Turn-Off Propagation Delay Time vs. VDD Supply Voltage
www.irf.com
7
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
250 Sh utd ow n D ela y T im e (n s ) Sh utd ow n D ela y T ime ( n s ) 200 150 100
Typ .
250 200 150
Typ. M ax.
M ax.
100 50 0
50 0 - 50
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature(oC)
V C C /V BS Supply V oltage (V )
Figure 9A. Shutdown Delay Time vs. Temperature
400 Shu tdo wn De lay T i me ( ns )
M ax .
Figure 9B. Shutdown Delay Time vs. VCC/VBS Supply Voltage
250 Tur n- O n Ris e T ime ( n s ) . 200 150
M ax.
300
200
T yp.
100 50 0
100
T yp.
0 0 2 4 6 8 10 12 14 16 18 20
-5 0
-25
0
25
50
o
75
100
125
V DD Supply V oltage (V )
Temperature ( C)
Figure 9C. Shutdown Time vs. VDD Supply Voltage
250 T ur n- O n Ris e T ime ( n s ) .
Figure 10A. Turn-On Rise Time vs. Temperature
125 Tur n- O ff Fal l T im e ( ns ) 100 75
M ax.
200
M ax
150 100
Typ
50 25
Typ.
50 0 10 12 14 16 18 20
0 -50
-25
0
25
50
o
75
100
125
V BIAS Supply V oltage (V )
Temper ature ( C)
Figure 10B. Turn-On Rise Time vs. Voltage
Figure 11A. Turn-Off Fall Time vs. Temperature
www.irf.com
8
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
125
15 L o g ic " 1 " I n p u t T h r e s h o ld ( V ) 12 Min. 9 6 3 0 -50 -25 0 25 50 75 100 125
Tur n- O ff Fal l Tim e ( ns)
100
M ax
75 50 25 0 10 12 14 16 18 20
Typ
V BIAS S upply Voltage (V )
Temperature (°C) Figure 12A. Logic “I” Input Threshold vs. Temperature
15 Logic "0" Input Threshold (V) 12 9
Figure 11B. Turn-Off Fall Time vs. Supply Voltage
Logic " 1 " Input Treshold (V)
9
12
15
Min.
6
Max.
6 3 0
0 2.5
3
5
7.5
10
12.5
15
17.5
20
-5 0
-2 5
0
25
50
75
100
125
V DD Logic
Supply Voltage (V)
Temperature (°C)
Figure 12B. Logic “I” Input Threshold vs. Voltage
15 Logic " 0 " Input Tres hold (V)
Hig h L ev el O ut put Vo ltag e ( V) 1.0 0.8 0.6 0.4
Figure 13A. Logic “0” Input Threshold vs. Temperature
6
9
12
Max.
3
M ax.
0.2 0.0 -50
0
2.5
5
7.5
10
12.5
15
17.5
20
- 25
0
25
50
75
100
125
V DD Logic Supply Voltage (V)
Temperature ( oC)
Figure 13B. Logic “0” Input Threshold vs. Voltage
Figure 14A. High Level Output Voltage vs. Temperature (Io = 2 mA)
www.irf.com
9
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
Hig h L ev e l O utp ut Vol tag e ( V )
Low L ev el O utput Vo ltage ( V)
1.0 0.8 0.6 0.4 0.2 0.0 10 12 14 16 18 20
M ax
1.0 0.8 0.6 0.4 0.2 0.0 -50
M ax
-25
0
25
50
o
75
100
125
V BAIS Supply V oltage (V )
Temperature ( C)
Figure 14B. High Level Output Voltage vs. Supply Voltage (Io = 2 mA)
Low Le v el Output Volt age ( V) 1.0 0.8 0.6 0.4 0.2 0.0 10 12 14 16 18 20 V BAIS Supply Volt age (V)
VBS Supply Current (µA)
Figure 15A. Low Level Output Voltage vs. Temperature (Io = 2 mA) 200 150 100
M ax.
50
Typ.
M ax
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 15B. Low Level Output Voltage vs. Supply Voltage (Io = 2 mA)
200
VBS Supply Current (µA)
Figure 16A. VBS Supply Current vs. Temperatur e
100
VBS Supply Current (µA)
150 100
M ax.
80 60
Max.
40 20
50
Typ.
0 10 12 14 16 18 20 V BS Supply Voltage (V)
Typ.
0 -50 -25 0 25 50 75 100 125 Tem perature (°C )
Figure 16B. V BS Supply Current vs. Voltage
Figure 17A. VBS Supply Current vs. Temperature
www.irf.com
10
IRS2112(-1,-2,S)PbF
100 VBS Supply Current (µA) VCC Supply Current (µA) 80 M ax. 60 40 20 0 10 12 14 16 18 20 Ty p.
300 250 200 150 100 50 0 -5 0 -2 5 0 25 50 75 100 125
M ax.
Typ.
V B S F loating S upply Voltage (V )
Temperature (°C)
Figure 17B. VBS Supply Current vs. Voltage
300
Vcc Supply Current (µA)
Figure 18A. VCC Supply Current vs. Temperature 12
VDD Supply Current (µA)
250 200 150 100 50 0 10 12 14 16 18 20
10 8 6 4 2 0 -50 -25 0 25 50
M ax.
M ax.
Typ.
Typ.
75
100
125
V cc Fixed Supply Voltage (V)
Temperature (°C)
Figure 18B. VCC Supply Current vs. Voltage 12
V DD S u p p ly C u rre n t (µA)
Figure 19A. VDD Supply Current vs. Temperature
Logic "1 " Input Bias Current (µA) 100 80 60
10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 18 20
VDD Logic Supply Voltage (V)
Max.
Max.
40 20
Typ.
Typ.
0 -50 -25 0 25 50 75 100 125
Temperature (°C)
Figure 19B. VDD Supply Current vs. VDD Voltage
Figure 20A. Logic “I” Input Current vs. Temperature
www.irf.com
11
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
Logic "1" Input Bias Current (uA) Lo gic "0" Input Bia s Cur rent ( µA) 100 80 60 40 20 6 5 4 3 2 1 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Max
Max.
Typ.
0 0 2 4 6 8 10 12 14 16 18 VDD Logic Supply Voltage (V) 20
Figure 20B. Logic “1” Input Current vs. V DD Voltage
Logic "0" Input Bias C urr ent (µA) 6 5 4 3 2 1 0 10 12 14 16 18 20 Supply Voltage (V) Max
Figure 21A. Logic "0" Input Bias Current
vs. Temperature
VBS Undervoltage Lockout +(V) 11 10 9
Max. Typ.
8
Min.
7 6 -50 -25 0 25 50 75 100 125
Temperature (°C)
Figure 21B. Logic "0" Input Bias Current vs. Voltage
11 VBS Undervoltage Lockout -(V) 10
Figure 22. VBS Undervoltage (+) vs. Temperature
11 VCC Undervoltage Lockout +(V) 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (oC )
Max.
9
Max. Typ. Min.
Typ.
8
Min.
7 6 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 23. VBS Undervoltage (-) vs. Temperature
Figure 24. VCC Undervoltage (-) vs. Temperature
www.irf.com
12
IRS2112(-1,-2,S)PbF
VCC Undervoltage Lockout - (V) Ou tpu t S our c e Cu r r e nt ( mA )
11 10
500 400
T yp.
Max.
9
300 200 100 0 - 50 - 25 0 25 50
o
Typ.
8
M in.
Min.
7 6 -50 -25 0 25 50 75 100 125
75
100
125
Temperature (°C)
Temperature ( C)
Figure 25. VCC Undervoltage (-) vs. Temperature
O u tp u t So u r c e C u r r e n t ( m A )
Figure 26A. Output Source Current vs. Temperature
750 Ou tpu t S ink Cu rre nt ( mA ) 600
M in. T yp.
500 400 300 200 100
M in. Typ .
450 300 150 0
0 10 12 14 16 18 20
- 50
- 25
0
25
50
75
100
12 5
V BIA S S upply Voltage ( V)
Temperatu re ( oC)
Figure 26B. Output Source Current vs. Supply Voltage
750 Ou tpu t Sink Cur ren t (m A ) 600 450 300
M in.
Figure 27A. Output Sink Current vs. Temperature
Typ.
150 0 10 12 14 16 18 20
V BIA S Supply V oltage (V )
Figure 27B. Output Sink Current vs. Supply Voltage
www.irf.com
13
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
150 150
320 V
Junction Temperature (°C)
125
Junction Temperature (°C)
320 V
125
100
100
140 V
75
75
140 V
50
10 V
50
10 V
25
25
0 1E+2 1E+3 1E+4 1E+5 1E+6
0 1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Frequency (Hz)
Figure 28. IRS2112 TJ vs. Frequency (IRFBC20) RGATE = 33 Ω , VCC = 15 V
150
Figure 29. IRS2112 TJ vs. Frequency (IRFBC30) RGATE = 22 Ω , VCC = 15 V
150
320 V
320 V 140 V 10 V
Junction Temperature (°C)
125
Junction Temperature (°C)
125
140 V
100
10 V
100
75
75
50
50
25
25
0 1E+2 1E+3 1E+4 1E+5 1E+6
0 1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Frequency (Hz)
Figure 30. IRS2112 TJ vs. Frequency (IRFBC40) RGATE = 15 Ω , VCC = 15 V
150
Figure 31. IRS2112 TJ vs. Frequency (IRFPE50) RGATE = 10 Ω , VCC = 15 V
320 V
150
320 V
140 V
Junction Temperature (°C)
125
Junction Temperature (°C)
125
100
100
140 V
75
10 V
75
10 V
50
50
25
25
0 1E+2 1E+3 1E+4 1E+5 1E+6
0 1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Frequency (Hz)
Figure 32. IRS2112S TJ vs. Frequency (IRFBC20) RGATE = 33 Ω , VCC = 15 V
Figure 33. IRS2112S TJ vs. Frequency (IRFBC30) RGATE = 22 Ω , VCC = 15 V
www.irf.com
14
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
150
320 V 140 V
150
320 V 140 V 10 V
Junction Temperature (°C)
125
10 V
Junction Temperature (°C)
125
100
100
75
75
50
50
25
25
0 1E+2 1E+3 1E+4 1E+5 1E+6
0 1E+2 1E+3 1E+4 1E+5 1E+6
Frequency (Hz)
Frequency (Hz)
Figure 34. IRS2112S TJ vs. Frequency (IRFBC40) RGATE = 15 Ω , VCC = 15 V
Figure 35. IRS2112S TJ vs. Frequency (IRFPE50) RGATE = 10 Ω , VCC = 15 V
0.0
20.0
VS Offset Supply Voltage (V)
-3.0
Typ.
VSS Logic Supply Offset Voltage (V)
12 14 16 18 20
16.0
-6.0
12.0
-9.0
8.0
Typ.
-12.0
4.0
-15.0 10
0.0 10 12 14 16 18 20
VBS Floating Supply Voltage (V)
VCC Fixed Supply Voltage (V)
Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage
Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage
www.irf.com
15
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
Case outline
14-Lead PDIP
01-6010 01-3002 03 (MS-001AC)
14-Lead PDIP w/o Lead 4
www.irf.com
01-6010 01-3008 02 (MS-001AC)
16
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
16 Lead PDIP w/o Leads 4 & 5
01-6015 01-3010 02
16-Lead SOIC (wide body)
www.irf.com
01 6015 01-3014 03 (MS-013AA)
17
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
Tape & Reel 16-Lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D F C
N OT E : CO NTROLLING D IMENSION IN MM
E G
C A R R I E R T A P E D IM E N S I O N F O R 1 6 S O IC W M etr ic Im p eria l Code M in M ax M in M ax A 1 1 .9 0 1 2. 1 0 0. 4 6 8 0 .4 76 B 3 .9 0 4.1 0 0. 1 5 3 0 .1 61 C 1 5 .7 0 1 6. 3 0 0. 6 1 8 0 .6 41 D 7 .4 0 7.6 0 0. 2 9 1 0 .2 99 E 1 0 .8 0 1 1. 0 0 0. 4 2 5 0 .4 33 F 1 0 .6 0 1 0. 8 0 0. 4 1 7 0 .4 25 G 1 .5 0 n/ a 0. 0 5 9 n/ a H 1 .5 0 1.6 0 0. 0 5 9 0 .0 62
F
D C E B A
G
H
R E E L D IM E N S I O N S F O R 1 6 SO IC W M etr ic Im p eria l Code M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 1 3 .0 0 1 B 2 0 .9 5 2 1. 4 5 0. 8 2 4 0 .8 44 C 1 2 .8 0 1 3. 2 0 0. 5 0 3 0 .5 19 D 1 .9 5 2.4 5 0. 7 6 7 0 .0 96 E 9 8 .0 0 1 02 .0 0 3. 8 5 8 4 .0 15 F n /a 2 2. 4 0 n /a 0 .8 81 G 1 8 .5 0 2 1. 1 0 0. 7 2 8 0 .8 30 H 1 6 .4 0 1 8. 4 0 0. 6 4 5 0 .7 24
www.irf.com
18
PDF created with pdfFactory trial version www.pdffactory.com
IRS2112(-1,-2,S)PbF
LEADFREE PART MARKING INFORMATION
Part number
IRSxxxx YWW? ?XXXX
Lot Code (Prod mode - 4 digit SPN code) IR logo
Date code
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Assembly site code Per SCOP 200-002
ORDER INFORMATION
14-Lead PDIP IRS2112PbF 14-Lead PDIP IRS2112-1PbF 16-Lead PDIP IRS2112-2PbF 16-Lead SOIC IRS2112SPbF 16-Lead SOIC Tape & Reel IRS2112STRPbF
The SOIC-16 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 11/27/2006
www.irf.com
19
PDF created with pdfFactory trial version www.pdffactory.com