0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRS21363

IRS21363

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRS21363 - 3-PHASE BRIDGE DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IRS21363 数据手册
PRELIMINARY Data Sheet No. PD60272 IRS2136/IRS21362/IRS21363/IRS21365/ IRS21366/IRS21367/IRS21368 (J&S) PbF 3-PHASE BRIDGE DRIVER Features • • • • • • • • • • • • • • Floating channel designed for bootstrap operation Fully operational to +600 V Tolerant to negative transient voltage, dV/dt immune Gate drive supply range from 10 V to 20 V (IRS2136/ IRS21368), 11.5 V to 20 V (IRS21362), or 12 V to 20 V (IRS21363/IRS21365/IRS21366/IRS21367 Undervoltage lockout for all channels Over-current shutdown turns off all six drivers Independent 3 half-bridge drivers Matched propagation delay for all channels Cross-conduction prevention logic Low side output out of phase with inputs. High side outputs out of phase (IRS213(6,63, 65, 66, 67, 68)), or in phase (IRS21362) with inputs 3.3 V logic compatible Lower di/dt gate drive for better noise immunity Externally programmable delay for automatic fault clear All parts are LEAD-FREE Packages 28-Lead SOIC 28-Lead PDIP 44-Lead PLCC w/o 12 Leads Applications: *Motor Control *Air Conditioners/ Washing Machines *General Purpose Inverters *Micro/Mini Inverter Drives Description The IRS2136x are high voltage, high Feature Comparison: IRS2136x speed power MOSFET and IGBT driver with three independent high side and low side Part IRS2136 IRS21362 IRS21363 IRS21365 IRS21366 IRS21367 IRS21368 referenced output channels for 3-phase ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ Input Logic HIN, LIN HIN, LIN HIN, LIN HIN, LIN HIN, LIN HIN, LIN HIN, LIN applications. Proprietary HVIC technology t (typ.) 530 ns 530 ns 530 ns 530 ns 200 ns 200 ns 530 ns enables ruggedized monolithic construction. t (typ.) 530 ns 530 ns 530 ns 530 ns 200 ns 200 ns 530 ns Logic inputs are compatible with CMOS or V (min.) 2.5 V 2.5 V 2.5 V 2.5 V 2.5 V 2.5 V 2.5 V LSTTL outputs, down to 3.3 V logic. A current V (max.) 0.8 V 0.8 V 0.8 V 0.8 V 0.8 V 0.8 V 0.8 V trip function which terminates all six outputs V 0.46 V 0.46 V 0.46 V 4.3 V 0.46 V 4.3 V 4.3 V can be derived from an external current sense V / 8.9 V 10.4 V 11.1 V 11.1 V 11.1 V 11.1 V 8.9 V V resistor. An enable function is available to V / 8.2 V 9.4 V 10.9 V 10.9 V 10.9 V 10.9 V 8.2 V terminate all six outputs simultaneously. An V open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operates up to 600 V. on off IH IL ITRIP+ CCUV+ BSUV+ CCUVBSUV- Typical Connection www.irf.com 1 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VS VB VHO1,2,3 VCC VSS VLO1,2,3 VIN VFLT dV/dt PD Definition High side offset voltage High side floating supply voltage High side floating output voltage Low side and logic fixed supply voltage Logic ground Low side output voltage Input voltage LIN, HIN, ITRIP, EN, RCIN FAULT output voltage Allowable offset voltage slew rate Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (28 lead PDIP) (28 lead SOIC) (44 lead PLCC) (28 lead PDIP) (28 lead SOIC) (44 lead PLCC) Min. VB 1,2,3 - 20 -0.3 VS1,2,3 - 0.3 -0.3 VCC - 20 -0.3 VSS -0.3 VSS -0.3 — — — — — — — — -55 — Max. VB 1,2,3 + 0.3 620 VB 1,2,3 + 0.3 20 VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.5 1.6 2.0 83 78 63 150 150 300 Units V V/ns W RthJA TJ TS TL °C/W °C Recommended Operating Conditions The input/output logic-timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS & VSS offset ratings are tested with all supplies biased at a 15 V differential. Symbol VB1,2,3 VS1,2,3 VCC VHO1,2,3 VLO1,2,3 VSS VFLT VRCIN Definition IRS213(6,68) High side floating supply voltage High side floating supply voltage IRS213(6,68) Low side supply voltage High side output voltage Low side output voltage Logic ground FAULT output voltage RCIN input voltage IRS21362 IRS213(6,63,65,66,67) IRS21362 IRS213(6,63,65,66,67) Min. VS1,2,3 +10 VS1,2,3 +11.5 VS1,2,3 +12 Note 1 10 11.5 12 VS1,2,3 0 -5 VSS VSS Max. VS1,2,3 + 20 VS1,2,3 + 20 VS1,2,3 + 20 600 20 20 20 VB1,2,3 VCC 5 VCC VCC Units V Note 1: Logic operational for VS of (COM - 8 V) to (COM + 600 V). Logic state held for VS of (COM - 8 V) to (COM –VBS). (Please refer to the Design Tip DT97-3 for more details). www.irf.com 2 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Recommended Operating Conditions - (Continued) The input/output logic-timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS & VSS offset ratings are tested with all supplies biased at a 15 V differential. Symbol VITRIP Definition Min. VSS VSS -40 Max. Units VSS + 5 VSS + 5 125 V °C ITRIP input voltage Logic input voltage LIN, HIN (IRS213(6,63,65,66,67,68)), VIN LIN, HIN (IRS21362), EN TA Ambient temperature Note 1: HIN, LIN, EN and the ITRIP pin are internally clamped with a 5.2 V zener diode. Static Electrical Characteristics VBIAS (VCC,VBS1,2,3) = 15 V unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are applicable to all six channels (HIN1,2,3/HIN1,2,3 and LIN1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: LO1,2,3 and HO1,2,3. Symbol Definition Min. Typ. Max. Units Test Conditions Logic “0” input voltage LIN1,2,3, HIN1,2,3 2.5 — — IRS213(6,63,65) VIH Logic “1” input voltage HIN1,2,3 IRS21362 Logic “0” input voltage LIN1,2,3, HIN1,2,3 2.5 — — IRS213(66,67,68) Logic “1” input voltage LIN1,2,3, HIN1,2,3 IRS213(6,63,65) Logic “0” input voltage HIN1,2,3 IRS21362 VIL — 0.8 — Logic “0” input voltage LIN1,2,3, HIN1,2,3 IRS213(66,67,68) VIN,TH+ Input positive going threshold — 1.9 — VIN,THVEN,TH+ VEN,THVIT,TH+ (6,62,63,66) VIT,HYS (6,62,63,66) VIT,TH+ (65,67,68) VIT,HYS (65,67,68) VRCIN, TH+ VRCIN, HYS VOH VOL VCCUV+ (6,68) VCCUV- (6,68) VCCUVHY (6,68) VBSUV+ (6,68) Input negative going threshold Enable positive going threshold Enable negative going threshold ITRIP positive going threshold ITRIP hysteresis ITRIP positive going threshold ITRIP hysteresis RCIN positive going threshold RCIN hysteresis High level output voltage, VBIAS - VO Low level output voltage, VO VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold VCC supply undervoltage hysteresis VBS supply undervoltage positive going threshold — — 0.8 — 3.85 — — — — — 8 7.4 0.3 8 1 — — 0.07 4.3 0.15 8 3 0.9 0.4 8.9 8.2 0.7 8.9 — 2.5 — 0.55 — 4.75 — — — 1.4 0.6 9.8 9 — 9.8 Io = 20 mA V 0.37 0.46 www.irf.com 3 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Static Electrical Characteristics - (Continued) VBIAS (VCC,VBS1,2,3) = 15 V unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are applicable to all six channels (HIN1,2,3/ HIN1,2,3 and LIN1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: LO1,2,3 and HO1,2,3. Symbol VBSUV- (6,68) VBSUVHY (6,68) VCCUV+ (62) VCCUV- (62) VCCUVHY (62) VBSUV+ (62) VBSUV- (62) VBSUVHY (62) VCCUV+ (63,65,66,67) VCCUV- (63,65,66,67) VCCUVHY (63,65,66,67) VBSUV+ (63,65,66,67) VBSUV- (63,65,66,67) VBSUVHY (63,65,66,67) ILK IQBS IQCC VIN,CLAMP ILIN+ (6,62,63,65) ILIN- (6,62,63,65) ILIN+ (66,67,68) ILIN- (66,67,68) IHIN+ (6,63,65) IHIN- (6,63,65) IHIN+ (62) IHIN- (62) IHIN+ (66,67,68) IHIN- (66,67,68) IITRIP+ IITRIPIEN+ IEN- Definition VBS supply undervoltage negative going threshold VBS supply undervoltage hysteresis VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold VCC supply undervoltage hysteresis VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VBS supply undervoltage hysteresis VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold VCC supply undervoltage hysteresis VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VBS supply undervoltage hysteresis Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Input clamp voltage (HIN, LIN, ITRIP and EN) Input bias current (LOUT = HI) Input bias current (LOUT = LO) Input bias current (LOUT = HI) Input bias current (LOUT = LO) Input bias current (HOUT = HI) Input bias current (HOUT = LO) Input bias current (HOUT = HI) Input bias current (HOUT = LO) Input bias current (HOUT = HI) Input bias current (HOUT = LO) “High” ITRIP input bias current “Low” ITRIP input bias current “High” ENABLE input bias current “Low” ENABLE input bias current Min. Typ. Max. Units 7.4 0.3 9.6 8.6 0.5 9.6 8.6 0.5 10.4 10.2 — 10.4 10.2 — — — — 4.8 — — — — — — — — — — — — — — 8.2 0.7 10.4 9.4 1 10.4 9.4 1 11.1 10.9 0.2 11.1 10.9 0.2 — 70 2 5.2 110 150 — — 110 150 5 — — — 5 — 5 — 9 — 11.2 10.2 — 11.2 10.2 — 11.6 11.4 — 11.6 11.4 — 50 120 3 5.65 150 200 3 3 150 200 20 3 3 3 40 1 40 1 µA µA mA V V Test Conditions VB=VS= 600 V all inputs are in off state IIN=100 µA VIN=4 V VIN0 V VIN=4 V VIN=0 V VIN=4 V VIN=0 V VIN=4 V VIN=0 V VIN=4 V VIN=0 V VIN=4 V VIN=0 V VIN=4 V VIN=0 V www.irf.com 4 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Static Electrical Characteristics - (Continued) VBIAS (VCC,VBS1,2,3) = 15 V unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are applicable to all six channels (HIN1,2,3/HIN1,2,3 and LIN1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: LO1,2,3 and HO1,2,3. Symbol IRCIN IO+ IORon_RCIN Ron_FAULT Definition RCIN input bias current Output high short circuit pulsed current Output low short circuit pulsed current RCIN low on resistance FAULT low on resistance Min. Typ. Max. Units — 120 250 — — — 200 350 50 50 1 — mA — 100 100 Ω µA Test Conditions VRCIN= 0 V or 15 V Vo =0 V, PW ≤10 µs Vo =15 V, PW ≤10 µs I= 1.5 mA Dynamic Electrical Characteristics Dynamic Electrical Characteristics VCC = VBS = VBIAS = 15 V, VS1,2,3 = VSS = COM, TA = 25 °C and CL = 1000 pF unless otherwise specified. Symbol ton toff ton (66,67) toff(66,67) tr tf tEN tEN (66,67) tITRIP tbl tFLT tFILIN tfilterEN DT MT MDT PM tFLTCLR Definition Turn-on propagation delay Turn-off propagation delay Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time ENABLE low to output shutdown propagation delay ENABLE low to output shutdown propagation delay ITRIP to output shutdown propagation delay ITRIP blanking time ITRIP to FAULT propagation delay Input filter time (HIN, LIN) (IRS213(6,62,63,65,68) only) Enable input filter time (IRS213(6,62,63,65,68) only) Deadtime ton, toff matching time (on all six channels) DT matching (Hi->Lo & Lo->Hi on all channels) Pulse width distortion (pwin-pwout) FAULT clear time RCIN: R = 2 MΩ, C = 1 nF Min. Typ. Max. Units 400 400 — — — — 350 — 500 — 400 200 100 190 — — — 1.3 530 530 200 200 125 50 460 300 750 400 600 350 200 290 — — — 1.65 750 750 — — 190 75 650 — 1200 — 950 510 — 420 50 60 75 2 ms ns Test Conditions VIN = 0 V & 5 V VIN, VEN = 0 V or 5 V VITRIP =5 V VIN = 0 V or 5 V VITRIP = 5 V VIN = 0 V & 5 V VIN = 0 V & 5 V external dead time External dead time >420 ns External dead time 0 s PW input=10 µs VIN = 0 V or 5 V VITRIP = 0 V Note: For high side PWM, HIN pulse width must be ≥ 500 ns. www.irf.com 5 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY HIN1,2,3 HIN1,2,3 LIN1,2,3 EN ITRIP FAULT RCIN HO1,2,3 LO1,2,3 Fig. 1. Input/Output Timing Diagram LIN1,2,3 HIN1,2,3 50% 50% 50% EN PW IN ten LIN1,2,3 HIN1,2,3 ton 50% 50% HO1,2,3 LO1,2,3 toff 90% tf 90% tr 90% PW OUT HO1,2,3 LO1,2,3 10% 10% Fig. 2. Switching Time Waveforms Fig. 3. Output Enable Timing Waveform www.irf.com 6 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY L IN 1 ,2 ,3 50% 50% H IN 1 ,2 ,3 L IN 1 ,2 ,3 H IN 1 ,2 ,3 50% 50% L O 1 ,2 ,3 DT 50% 50% DT H O 1 ,2 ,3 50% 50% Fig. 4. Internal Deadtime Timing Waveforms R C IN IT R IP 50% 50% FAULT Any O uput tflt 50% 50% 90% tfltc lr titrip Fig. 5. ITRIP/RCIN Timing Waveforms t in,fil t in,fil n H IN /LIN on o ff on off on o ff H O /LO h ig h lo w Fig. 6. Input Filter Function www.irf.com 7 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Lead Definitions Symbol VCC VSS HIN1,2,3 HIN1,2,3 LIN1,2,3 FAULT EN ITRIP RCIN COM VB1,2,3 HO1,2,3 VS1,2,3 LO1,2,3 Low side supply voltage Logic ground Logic inputs for high side gate driver outputs (HO1,2,3), out of phase [IRS213(6,63,65,66,67,68)] Logic inputs for high side gate driver outputs (HO1,2,3), in Phase (IRS21362) Logic input for low side gate driver outputs (LO1,2,3), out of phase Indicates over-current (ITRIP) or low-side undervoltage lockout has occurred. negative logic, open-drain output Logic input to enable I/O functionality. I/O logic functions when ENABLE is high (i.e., positive logic). No effect on FAULT and not latched Analog input for overcurrent shutdown. when active, ITRIP shuts down outputs and activates FAULT and RCIN low. when ITRIP becomes inactive, FAULT stays active low for an externally set time TFLTCLR, then automatically becomes inactive (open-drain high impedance). External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equal to R*C. when RCIN>8 V, the FAULT pin goes back into open-drain high-impedance Low side gate drivers return High side floating supply High side gate driver outputs High voltage floating supply return Low side driver sourcing outputs Description Note: LIN, HIN, EN, and ITRIP are internally clamped with a 5.2 V zener diode. www.irf.com 8 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Lead Assignments www.irf.com 9 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Functional Block Diagram www.irf.com 10 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Functional Block Diagram www.irf.com 11 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Functional Block Diagram www.irf.com 12 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Functional Block Diagram VCC UVCC, FAULT returns to high impedance. Note 3: When VBS < UVBS, HO goes low. After VBS goes higher than UVBS, HO stays low until a new falling IRS213(6,63,65,66,67,68) or rising IRS21362 transition of HIN. Note 4: When ITRIP < VITRIP, FAULT returns to high-impedance after RCIN pin becomes greater than 8 V (@ VCC = 15 V). www.irf.com 13 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY 1 PCB Layout Tips 1.1 Distance from H to L Voltage The IRS2136xJ package lacks some pins (see page 11) in order to maximizing the distance between the high voltage and low voltage pins. It’s strongly recommended to place the components tied to the floating voltage in the respective high voltage portions of the device (VB1,2,3, VS1,2,3) side. 1.2 Ground Plane To minimize noise coupling ground plane must not be placed under or near the high voltage floating side. 1.3 Gate Drive Loops Current loops behave like an antenna able to receive and transmit EM noise (see Fig. 7). In order to reduce EM coupling and improve the power switch turn on/off performances, gate drive loops must be reduced as much as possible. Moreover, current can be injected inside the gate drive loop via the IGBT collector-to-gate parasitic capacitance. The parasitic auto-inductance of the gate loop contributes to develop a voltage across the gate-emitter increasing the possibility of self turn-on effect. Fig. 7. Antenna Loops 1.4 Supply Capacitors Supply capacitors must be placed as close as possible to the device pins (VCC and VSS for the ground tied supply, VB and VS for the floating supply) in order to minimize parasitic inductance/resistance. 1.5 Routing and Placement Power stage PCB parasitic may generate dangerous voltage transients for the gate driver and the control logic. In particular it’s recommended to limit phase voltage negative transients. In order to avoid such undervoltage it is highly recommended to minimize high side emitter to low side collector distance and low side emitter to negative bus rail stray inductance. See DT04-4 at www.irf.com for more detailed information. www.irf.com 14 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Figures 8-28 provide information on the experimental performance of the IRS2136S HVIC. The line plotted in each figure is generated from actual lab data. A large number of individual samples were tested at three temperatures (-40 ºC, 25 ºC, and 125 ºC) in order to generate the experimental (Exp.) curve. The line labeled Exp. consist of three data points (one data point at each of the tested temperatures) that have been connected together to illustrate the understood trend. The individual data points on the curve were determined by calculating the averaged experimental value of the parameter (for a given temperature). 1000 800 600 400 200 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Exp. Turn-on Propagation Delay (ns) Turn-off Propagation Delay (ns ) 1000 800 600 400 200 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Exp. Fig. 8. Turn-On Propagation Delay vs. Temperature Fig. 9. Turn-Off Propagation Delay vs. Temperature Turn-On Rise Time (ns) Turn-Off Fall Time (ns) 300 225 150 75 0 -50 -25 0 25 50 o Exp. 100 75 50 Exp. 25 0 75 100 125 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Temperature ( C) Fig. 10. Turn-On Rise Time vs. Temperature Fig. 11. Turn-Off Fall Time vs. Temperature www.irf.com 15 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY DT Propagation Delay (ns) TITRIP Propagation Delay (ns) 600 450 Exp. 1500 1200 900 Exp. 300 150 0 -50 -25 0 25 50 75 100 125 Temperature (oC) 600 300 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Fig. 12. DT Propagation Delay vs. Temperature Fig. 13. TITRIP Propagation Delay vs. Temperature ITRIP to FAULT Propagation Delay (ns) 1000 800 600 400 200 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Exp. TEN SD Propagation Delay (ns) 1200 1000 800 600 Exp. 400 200 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Fig. 14. ITRIP to FAULT Propagation Delay vs. Temperature RCIN Low On Resistance ( Ohm) Fig. 15. TEN SD Propagation Delay vs. Temperature 100 80 60 40 20 0 -50 -25 0 25 50 o FAULT Low On Resistance ( Ohm) 100 80 60 40 20 0 -50 -25 0 25 50 o Exp. Exp. 75 100 125 75 100 125 Temperature ( C) Temperature ( C) Fig. 16. RCIN Low On Resistance vs. Temperature Fig. 17. FAULT Low On Resistance vs. Temperature www.irf.com 16 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY V CC Quiescent Current (mA) VBS Quiescent Current (uA) 5 4 3 2 Exp. 120 100 80 60 40 20 0 Exp. 1 0 -50 -25 0 25 50 o 75 100 125 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Temperature ( C) Fig. 18. VCC Quiescent Current vs. Temperature 12 10 Exp. Fig. 19. VBS Quiescent Current vs. Temperature 12 10 V CCUV+ Threshold (V) VCCUV- Threshold (V) 8 6 4 2 0 -50 -25 0 25 50 o 8 6 4 2 0 Exp. 75 100 125 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Temperature ( C) Fig. 20. VCCUV+ Threshold vs. Temperature Fig. 21. VCCUV- Threshold vs. Temperature 10 9 10 9 VBSUV+ Threshold (V) VBSUV+ Threshold (V) -25 0 25 50 o Exp. Exp. 8 7 6 5 -50 75 100 125 Temperature ( C) 8 7 6 5 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Fig. 22. VBSUV+ Threshold vs. Temperature Fig. 23. VBSUV- Threshold vs. Temperature www.irf.com 17 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY 800 800 600 ITRIP TH- (mV) EXP. Exp. ITRIP TH+ (mV) 600 400 200 0 400 200 -50 -25 0 25 50 o 75 100 125 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Temperature ( C) Fig. 24. ITRIP TH+ vs. Temperature Fig. 25. ITRIP TH- vs. Temperature Output Low Short Circuit Current (A) IO+ L1 SC Pulsed Currentt (A) 0.30 0.25 Exp. 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 -50 -25 0 25 50 o Exp. 0.20 0.15 0.10 0.05 0.00 -50 -25 0 25 50 75 100 125 Temperature (oC) 75 100 125 Temperature ( C) Fig. 26. IO+ L1 SC Pulsed Current vs. Temperature 16 Fig. 27. IO- L1 SC Pulsed Current vs. Temperature ITRIP Input Bias Current (uA) 12 8 Exp. 4 0 -50 -25 0 25 50 o 75 100 125 Tem perature ( C) Fig. 28. ITRIP Input Bias Current vs. Temperature www.irf.com 18 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Case Outlines www.irf.com 19 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY Case Outlines www.irf.com 20 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY LOADED TAPE FEED DIRECTION B A H D F C NOTE : CONTROLLING DIM ENSION IN M M E G CARRIER TAPE DIMENSION FOR Metric Code Min Max A 11.90 12.10 B 3.90 4.10 C 23.70 24.30 D 11.40 11.60 E 10.80 11.00 F 18.20 18.40 G 1.50 n/a H 1.50 1.60 28SOICW Imperial Min Max 0.468 0.476 0.153 0.161 0.933 0.956 0.448 0.456 0.425 0.433 0.716 0.724 0.059 n/a 0.059 0.062 F D C E B A G H REEL DIMENSIONS FOR 28SOICW Metric Imperial Code Min Max Min Max A 329.60 330.25 12.976 13.001 B 20.95 21.45 0.824 0.844 C 12.80 13.20 0.503 0.519 D 1.95 2.45 0.767 0.096 E 98.00 102.00 3.858 4.015 F n/a 30.40 n/a 1.196 G 26.50 29.10 1.04 1.145 H 24.40 26.40 0.96 1.039 www.irf.com 21 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY LOADED TAPE FEED DIRECTION B A H D F C NOTE : CONTROLLING DIM ENSION IN M M E G CARRIER TAPE DIMENSION FOR Metric Code Min Max A 23.90 24.10 B 3.90 4.10 C 31.70 32.30 D 14.10 14.30 E 17.90 18.10 F 17.90 18.10 G 2.00 n/a H 1.50 1.60 44PLCC Imperial Min Max 0.94 0.948 0.153 0.161 1.248 1.271 0.555 0.562 0.704 0.712 0.704 0.712 0.078 n/a 0.059 0.062 F D C E B A G H REEL DIMENSIONS FOR 44PLCC Metric Code Min Max A 329.60 330.25 B 20.95 21.45 C 12.80 13.20 D 1.95 2.45 E 98.00 102.00 F n/a 38.4 G 34.7 35.8 H 32.6 33.1 Imperial Min Max 12.976 13.001 0.824 0.844 0.503 0.519 0.767 0.096 3.858 4.015 n/a 1.511 1.366 1.409 1.283 1.303 www.irf.com 22 IRS213(6,62,63,65,66,67,68) (J&S)PbF PRELIMINARY ORDER INFORMATION 28-Lead PDIP IRS2136PbF 28-Lead PDIP IRS21362PbF 28-Lead PDIP IRS21363PbF 28-Lead PDIP IRS21365PbF 28-Lead PDIP IRS21366PbF 28-Lead PDIP IRS21367PbF 28-Lead PDIP IRS21368PbF 28-Lead SOIC IRS2136SPbF 28-Lead SOIC IRS21362SPbF 28-Lead SOIC IRS21363SPbF 28-Lead SOIC IRS21365SPbF 28-Lead SOIC IRS21366SPbF 28-Lead SOIC IRS21367SPbF 28-Lead SOIC IRS21368SPbF 44-Lead PLCC IRS2136JPbF 44-Lead PLCC IRS21362JPbF 44-Lead PLCC IRS21363JPbF 44-Lead PLCC IRS21365JPbF 44-Lead PLCC IRS21366JPbF 44-Lead PLCC IRS21367JPbF 44-Lead PLCC IRS21368JPbF 28-Lead SOIC Tape & Reel IRS2136STRPbF 28-Lead SOIC Tape & Reel IRS21362STRPbF 28-Lead SOIC Tape & Reel IRS21363STRPbF 28-Lead SOIC Tape & Reel IRS21365STRPbF 28-Lead SOIC Tape & Reel IRS21366STRPbF 28-Lead SOIC Tape & Reel IRS21367STRPbF 28-Lead SOIC Tape & Reel IRS21368STRPbF 44-Lead PLCC Tape & Reel IRS2136JTRPbF 44-Lead PLCC Tape & Reel IRS21362JTRPbF 44-Lead PLCC Tape & Reel IRS21363JTRPbF 44-Lead PLCC Tape & Reel IRS21365JTRPbF 44-Lead PLCC Tape & Reel IRS21366JTRPbF 44-Lead PLCC Tape & Reel IRS21367JTRPbF 44-Lead PLCC Tape & Reel IRS21368JTRPbF WORLDWIDE HEADQUARTERS: 233 Kansas Street, El Segundo, CA 90245 Tel: (310) 252-7105 This part has been qualified per industrial level http://www.irf.com Data and specifications subject to change without notice. 5/19/2006 www.irf.com 23
IRS21363 价格&库存

很抱歉,暂时无法提供与“IRS21363”相匹配的价格&库存,您可以联系我们找货

免费人工找货