PRELIMINARY
Data Sheet No. PD60247revD
IRS2136D/IRS21362D/IRS21363D/IRS21365D/ IRS21366D/IRS21367D/IRS21368D (J&S) PBF 3-PHASE BRIDGE DRIVER
Features
• • • • • • • • • • • • • • •
Floating channel designed for bootstrap operation Fully operational to +600 V Tolerant to negative transient voltage, dV/dt immune Gate drive supply range from 10 V to 20 V (IRS2136D/ IRS21368D), 11.5 V to 20 V (IRS21362D), or 12 V to 20 V (IRS21363D/IRS21365D/IRS21366D/IRS21367D Undervoltage lockout for all channels Over-current shutdown turns off all six drivers Independent 3 half-bridge drivers Matched propagation delay for all channels Cross-conduction prevention logic Integrated bootstrap diode function Low side output out of phase with inputs. High side outputs out of phase (IRS213(6,63, 65, 66, 67, 68)D), or in phase (IRS21362D) with inputs 3.3 V logic compatible Lower di/dt gate drive for better noise immunity Externally programmable delay for automatic fault clear All parts are LEAD-FREE
Packages
28-Lead SOIC
28-Lead PDIP
44-Lead PLCC w/o 12 Leads
Applications:
*Motor Control *Air Conditioners/ Washing Machines *General Purpose Inverters *Micro/Mini Inverter Drives
Description
The IRS2136xD (J&S) are high voltage, high Feature Comparison: IRS2136xD speed power MOSFET and IGBT driver with three independent high side and low side Part IRS2136D IRS21362D IRS21363D IRS21365D IRS21366D IRS21367D IRS21368D referenced output channels for 3-phase ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ Input Logic HIN, LIN HIN, LIN HIN, LIN HIN, LIN HIN, LIN HIN, LIN HIN, LIN applications. Proprietary HVIC technology t (typ.) 530 ns 530 ns 530 ns 530 ns 200 ns 200 ns 530 ns enables ruggedized monolithic construction. t (typ.) 530 ns 530 ns 530 ns 530 ns 200 ns 200 ns 530 ns Logic inputs are compatible with CMOS or V (min.) 2.5 V 2.5 V 2.5 V 2.5 V 2.5 V 2.5 V 2.5 V LSTTL outputs, down to 3.3 V logic. A V (max.) 0.8 V 0.8 V 0.8 V 0.8 V 0.8 V 0.8 V 0.8 V current trip function which terminates all six V 0.46 V 0.46 V 0.46 V 4.3 V 0.46 V 4.3 V 4.3 V outputs can be derived from an external V / 8.9 V 10.4 V 11.1 V 11.1 V 11.1 V 11.1 V 8.9 V V current sense resistor. An enable function is V / 8.2 V 9.4 V 10.9 V 10.9 V 10.9 V 10.9 V 8.2 V available to terminate all six outputs V simultaneously. An open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operates up to 600 V.
on off IH IL ITRIP+ CCUV+ BSUV+ CCUVBSUV-
Typical Connection
www.irf.com
1
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage
Symbol
VS VB VHO1,2,3 VCC VSS VLO1,2,3 VIN VFLT dV/dt PD
Definition
High side offset voltage High side floating supply voltage High side floating output voltage Low side and logic fixed supply voltage Logic ground Low side output voltage Input voltage LIN, HIN, ITRIP, EN, RCIN FAULT output voltage Allowable offset voltage slew rate Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient Junction temperature Storage temperature (28 lead PDIP) (28 lead SOIC) (44 lead PLCC) (28 lead PDIP) (28 lead SOIC) (44 lead PLCC)
Min.
VB 1,2,3 - 20 -0.3 -0.3 VCC - 20 -0.3 VSS -0.3 VSS -0.3 — — — — — — — — -55
Max.
VB 1,2,3 + 0.3 620 20 VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.5 1.6 2.0 83 78 63 150 150
Units
VS1,2,3 - 0.3 VB 1,2,3 + 0.3 V
V/ns W
RthJA TJ TS
°C/W
°C
TL Lead temperature (soldering, 10 seconds) — 300 parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Recommended Operating Conditions
The input/output logic-timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS & VSS offset ratings are tested with all supplies biased at a 15 V differential.
Symbol
VB1,2,3 VS 1,2,3 VCC VHO 1,2,3 VLO1,2,3 VSS VFLT VRCIN
Definition
IRS213(6,68)D
Min.
VS1,2,3 +10 VS1,2,3 +11.5 VS1,2,3 +12 Note 1
IRS213(6,68)D
Max.
VS1,2,3 + 20 VS1,2,3 + 20 VS1,2,3 + 20 600 20 20 20 VB1,2,3 VCC 5 VCC VCC
Units
High side floating supply voltage IRS21362D
IRS213(6,63,65,66,67)D
High side floating supply voltage Low side supply voltage High side output voltage Low side output voltage Logic ground FAULT output voltage RCIN input voltage
IRS21362D IRS213(6,63,65,66,67)D
10 11.5 12 VS1,2,3 0 -5 VSS VSS
V
Note 1: Logic operational for VS of (COM - 8 V) to (COM + 600 V). Logic state held for VS of (COM - 8 V) to (COM – VBS). (Please refer to the Design Tip DT97-3 for more details).
www.irf.com
2
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Recommended Operating Conditions - (Continued)
The input/output logic-timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS & VSS offset ratings are tested with all supplies biased at a 15 V differential.
Symbol
VITRIP
Definition
Min.
VSS VSS -40
Max. Units
VSS + 5 VSS + 5 125 V °C
ITRIP input voltage Logic input voltage LIN, HIN (IRS213(6,63,65,66,67,68)D), VIN LIN, HIN (IRS21362D), EN TA Ambient temperature Note 1: HIN, LIN, EN and the ITRIP pin are internally clamped with a 5.2 V zener diode.
Static Electrical Characteristics
VBIAS (VCC,VBS1,2,3) = 15 V unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are applicable to all six channels (HIN1,2,3/HIN1,2,3 and LIN1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: LO1,2,3 and HO1,2,3. Symbol Definition Min. Typ. Max. Units Test Conditions Logic “0” input voltage LIN1,2,3, HIN1,2,3 IRS213(6,63,65)D 2.5 — — VIH Logic “1” input voltage HIN1,2,3 IRS21362D Logic “0” input voltage LIN1,2,3, HIN1,2,3 2.5 — — IRS213(66,67,68)D Logic “1” input voltage LIN1,2,3, HIN1,2,3 IRS213(6,63,65)D Logic “0” input voltage HIN1,2,3 IRS21362D VIL — — 0.8 Logic “0” input voltage LIN1,2,3, HIN1,2,3 IRS213(66,67,68)D VIN,TH+ Input positive going threshold — 1.9 — VIN,THVEN,TH+ VEN,THVIT,TH+ (6,62,63,66) VIT,HYS (6,62,63,66) VIT,TH+ (65,67,68) VIT,HYS (65,67,68) VRCIN, TH+ VRCIN, HYS VOH VOL VCCUV+ (6,68) VCCUV- (6,68) VCCUVHY (6,68) VBSUV+ (6,68) Input negative going threshold Enable positive going threshold Enable negative going threshold ITRIP positive going threshold ITRIP hysteresis ITRIP positive going threshold ITRIP hysteresis RCIN positive going threshold RCIN hysteresis High level output voltage, VBIAS - VO Low level output voltage, VO VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold VCC supply undervoltage hysteresis VBS supply undervoltage positive going threshold — — 0.8 — 3.85 — — — — — 8 7.4 0.3 8 1 — — 0.07 4.3 0.15 8 3 0.9 0.4 8.9 8.2 0.7 8.9 — 2.5 — 0.55 — 4.75 — — — 1.4 0.6 9.8 9 — 9.8 Io = 20 mA V
0.37 0.46
www.irf.com
3
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Static Electrical Characteristics - (Continued)
VBIAS (VCC,VBS1,2,3) = 15 V unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are applicable to all six channels (HIN1,2,3/ HIN1,2,3 and LIN1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: LO1,2,3 and HO1,2,3.
Symbol
VBSUV- (6,68) VBSUVHY (6,68) VCCUV+ (62) VCCUV- (62) VCCUVHY (62) VBSUV+ (62) VBSUV- (62) VBSUVHY (62) VCCUV+ (63,65,66,67) VCCUV(63,65,66,67) VCCUVHY (63,65,66,67) VBSUV+ (63,65,66,67) VBSUV(63,65,66,67) VBSUVHY (63,65,66,67) ILK IQBS IQCC VIN,CLAMP ILIN+ (6,62,63,65) ILIN- (6,62,63,65) ILIN+ (66,67,68) ILIN- (66,67,68) IHIN+ (6,63,65) IHIN- (6,63,65) IHIN+ (62) IHIN- (62) IHIN+ (66,67,68) IHIN- (66,67,68) IITRIP+ IITRIPIEN+ IEN-
Definition
VBS supply undervoltage negative going threshold VBS supply undervoltage hysteresis VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold VCC supply undervoltage hysteresis VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VBS supply undervoltage hysteresis VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold VCC supply undervoltage hysteresis VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VBS supply undervoltage hysteresis Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Input clamp voltage (HIN, LIN, ITRIP and EN) Input bias current (LOUT = HI) Input bias current (LOUT = LO) Input bias current (LOUT = HI) Input bias current (LOUT = LO) Input bias current (HOUT = HI) Input bias current (HOUT = LO) Input bias current (HOUT = HI) Input bias current (HOUT = LO) Input bias current (HOUT = HI) Input bias current (HOUT = LO) “High” ITRIP input bias current “Low” ITRIP input bias current “High” ENABLE input bias current “Low” ENABLE input bias current
Min. Typ. Max. Units
7.4 0.3 9.6 8.6 0.5 9.6 8.6 0.5 8.2 0.7 10.4 9.4 1 10.4 9.4 1 9 — 11.2 10.2 — 11.2 10.2 — 11.6 11.4 — 11.6 11.4 — 50 120 4 5.65 150 200 3 3 150 200 20 3 3 3 40 1 40 1 µA µA mA V V
Test Conditions
10.4 11.1 10.2 10.9 — 0.2
10.4 11.1 10.2 10.9 — — — — 4.8 — — — — — — — — — — — — — — 0.2 — 70 3 5.2 110 150 — — 110 150 5 — — — 5 — 5 —
VB=VS= 600 V all inputs @ logic 0 value IIN=100 µA VIN=4 V VIN=0 V VIN=4 V VIN=0 V VIN=4 V VIN=0 V VIN=4 V VIN=0 V VIN=4 V VIN=0 V VIN=4 V VIN=0 V VIN=4 V VIN=0 V
www.irf.com
4
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Static Electrical Characteristics - (Continued)
VBIAS (VCC,VBS1,2,3) = 15 V unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are applicable to all six channels (HIN1,2,3/HIN1,2,3 and LIN1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: LO1,2,3 and HO1,2,3.
Symbol
IRCIN IO+ IORon_RCIN Ron_FAULT RBS
Definition
RCIN input bias current Output high short circuit pulsed current Output low short circuit pulsed current RCIN low on resistance FAULT low on resistance Internal BS diode RON
Min. Typ. Max. Units
— 120 250 — — — — 200 350 50 50 200 1 — mA — 100 100 — Ω µA
Test Conditions
VRCIN= 0 V or 15 V Vo =0 V, PW ≤10 µs Vo =15 V, PW ≤10 µs I= 1.5 mA
Note 1: Please refer to Feature Description section for integrated bootstrap functionality information.
Dynamic Electrical Characteristics
Dynamic Electrical Characteristics VCC = VBS = VBIAS = 15 V, VS1,2,3 = VSS = COM, TA = 25 °C and CL = 1000 pF unless otherwise specified.
Symbol
ton toff ton (66,67) toff(66,67) tr tf tEN tEN (66,67) tITRIP tbl tFLT tFILIN tfilterEN DT MT MDT PM tFLTCLR
Definition
Turn-on propagation delay Turn-off propagation delay Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time ENABLE low to output shutdown propagation delay ENABLE low to output shutdown propagation delay ITRIP to output shutdown propagation delay ITRIP blanking time ITRIP to FAULT propagation delay Input filter time (HIN, LIN) (IRS213(6,62,63,65,68)D only) Enable input filter time (IRS213(6,62,63,65,68)D only) Deadtime ton, toff matching time (on all six channels) DT matching (Hi->Lo & Lo->Hi on all channels) Pulse width distortion (pwin-pwout) FAULT clear time RCIN: R = 2 MΩ, C = 1 nF
Min. Typ. Max. Units
400 400 — — — — 350 — 500 — 400 200 100 190 — — — 1.3 530 530 200 200 125 50 460 300 750 400 600 350 200 290 — — — 1.65 750 750 — — 190 75 650 — 1200 — 950 510 — 420 50 60 75 2 ms ns
Test Conditions
VIN = 0 V & 5 V
VIN, VEN = 0 V or 5 V VITRIP =5 V VIN = 0 V or 5 V VITRIP = 5 V VIN = 0 V & 5 V
VIN = 0 V & 5 V external dead time External dead time >420 ns External dead time 0 s PW input=10 µs VIN = 0 V or 5 V VITRIP = 0 V
Note 2: For high side PWM, HIN pulse width must be ≥ 500 ns.
www.irf.com
5
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
HIN1,2,3
HIN1,2,3
LIN1,2,3
EN
ITRIP FAULT
RCIN
HO1,2,3 LO1,2,3
Fig. 1. Input/Output Timing Diagram
LIN1,2,3 HIN1,2,3
50%
50%
50%
EN
PW IN ten
LIN1,2,3 HIN1,2,3
ton
50%
50%
HO1,2,3 LO1,2,3
toff 90% tf
90%
tr 90%
PW OUT
HO1,2,3 LO1,2,3
10%
10%
Fig. 2. Switching Time Waveforms
Fig. 3. Output Enable Timing Waveform
www.irf.com
6
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
L IN 1 ,2 ,3
50% 50%
H IN 1 ,2 ,3
L IN 1 ,2 ,3 H IN 1 ,2 ,3
50%
50%
L O 1 ,2 ,3
DT
50%
50%
DT
H O 1 ,2 ,3
50%
50%
Fig. 4. Internal Deadtime Timing Waveforms
R C IN
IT R IP
50%
50%
FAULT
Any O uput
tflt
50%
50%
90%
tfltc lr
titrip
Fig. 5. ITRIP/RCIN Timing Waveforms
t in,fil
t in,fil
n
H IN /LIN
on
o ff
on
off
on
o ff
H O /LO
h ig h
lo w
Fig. 6. Input Filter Function
www.irf.com
7
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Lead Definitions
Symbol
VCC VSS HIN1,2,3 HIN1,2,3 LIN1,2,3 FAULT EN ITRIP RCIN COM VB1,2,3 HO1,2,3 VS1,2,3 LO1,2,3 Low side supply voltage Logic ground Logic inputs for high side gate driver outputs (HO1,2,3), out of phase [IRS213(6,63,65,66,67,68)D] Logic inputs for high side gate driver outputs (HO1,2,3), in phase (IRS21362D) Logic input for low side gate driver outputs (LO1,2,3), out of phase Indicates over-current (ITRIP) or low-side undervoltage lockout has occurred. Negative logic, opendrain output Logic input to enable I/O functionality. I/O logic functions when ENABLE is high (i.e., positive logic) No effect on FAULT and not latched Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally set time TFLTCLR, then automatically becomes inactive (open-drain high impedance). External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equal to R*C When RCIN>8 V, the FAULT pin goes back into open-drain high-impedance Low side gate drivers return High side floating supply High side gate driver outputs High voltage floating supply return Low side driver sourcing outputs
Description
Note: LIN, HIN, EN, and ITRIP are internally clamped with a 5.2 V zener diode.
www.irf.com
8
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Lead Assignments
www.irf.com
9
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Functional Block Diagram
www.irf.com
10
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Functional Block Diagram
www.irf.com
11
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Functional Block Diagram
www.irf.com
12
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Functional Block Diagram
VCC UVCC, FAULT returns to high impedance. Note 3: When VBS < UVBS, HO goes low. After VBS goes higher than UVBS, HO stays low until a new falling IRS213(6,63,65,66,67,68)D or rising IRS21362D transition of HIN. Note 4: When ITRIP < VITRIP, FAULT returns to high-impedance after RCIN pin becomes greater than 8 V (@ VCC = 15 V).
www.irf.com
13
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
1 Features Description
1.1 Integrated Bootstrap Functionality
The IRS2136xD family embeds an integrated bootstrap FET that allows an alternative drive of the bootstrap supply for a wide range of applications. There is one bootstrap FET for each channel and it is connected between each of the floating supply (VB1, VB2, VB3) and VCC (see Fig. 7). The bootstrap FET of each channel follows the state of the respective low side output stage (i.e., bootFet is ON when LO is high, it is OFF when LO is low), unless the VB voltage is higher than approximately 1.1(VCC). In that case the bootstrap FET stays off until the VB voltage returns below that threshold (see Fig. 8). at a very high PWM duty cycle due to the bootstrap FET equivalent resistance (RBS, see page 5). In these cases, better performances can be achieved by using the IRS2136x non D version with an external bootstrap network. -
2 PCB Layout Tips
2.1 Distance from H to L Voltage
The IRS2136xDJ package lacks some pins (see page 8) in order to maximizing the distance between the high voltage and low voltage pins. It’s strongly recommended to place the components tied to the floating voltage in the respective high voltage portions of the device (VB1,2,3, VS1,2,3) side.
2.2 Ground Plane
To minimize noise coupling ground plane must not be placed under or near the high voltage floating side.
2.3 Gate Drive Loops
Current loops behave like an antenna able to receive and transmit EM noise (see Fig. 9). In order to reduce EM coupling and improve the power switch turn on/off performances, gate drive loops must be reduced as much as possible. Moreover, current can be injected inside the gate drive loop via the IGBT collector-togate parasitic capacitance. The parasitic autoinductance of the gate loop contributes to develop a voltage across the gate-emitter increasing the possibility of self turn-on effect. Fig. 7. Simplified BootFet Connection
Vth~17V Vcc=15V
Phase voltage LO
Bootstrap FET state
BootFet ON
BootFet OFF
BootFet ON
Fig. 8. State Diagram Bootstrap FET is suitable for most PWM modulation schemes and can be used either in parallel with the external bootstrap network (diode+resistor) or as a replacement of it. The use of the integrated bootstrap as a replacement of the external bootstrap network may have some limitations in the following situations: when used in non-complementary PWM schemes (typically 6-step modulations) Fig. 9. Antenna Loops
2.4 Supply Capacitors
Supply capacitors must be placed as close as possible to the device pins (VCC and VSS for the ground tied supply, VB and VS for the floating supply) in order to minimize parasitic inductance/resistance.
www.irf.com
14
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
2.5 Routing and Placement
Power stage PCB parasitic may generate dangerous voltage transients for the gate driver and the control logic. In particular it’s recommended to limit phase voltage negative transients.
In order to avoid such undervoltage it is highly recommended to minimize high side emitter to low side collector distance and low side emitter to negative bus rail stray inductance. See DT04-4 at www.irf.com for more detailed information.
www.irf.com
15
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Figures 10-30 provide information on the experimental performance of the IRS2136DS HVIC. The line plotted in each figure is generated from actual lab data. A large number of individual samples from multiple wafer lots were tested at three temperatures (-40 ºC, 25 ºC, and 125 ºC) in order to generate the experimental (Exp.) curve. The line labeled Exp. consist of three data points (one data point at each of the tested temperatures) that have been connected together to illustrate the understood trend. The individual data points on the curve were determined by calculating the averaged experimental value of the parameter (for a given temperature).
1000 800 600
Exp.
Turn-on Propagation Delay (ns)
800 600
Exp.
Turn-off Propagation Delay (ns )
1000
400 200 0 -50 -25 0 25 50
o
400 200 0 -50 -25 0 25 50
o
75
100
125
75
100
125
Temperature ( C)
Temperature ( C)
Fig. 10. Turn-On Propagation Delay vs. Temperature
Fig. 11. Turn-Off Propagation Delay vs. Temperature
Turn-On Rise Time (ns)
Turn-Off Fall Time (ns)
300 225 150 75 0 -50 -25 0 25 50
o
Exp.
100 75 50
Exp.
25 0
75
100
125
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Temperature ( C)
Fig. 12. Turn-On Rise Time vs. Temperature
Fig. 13. Turn-Off Fall Time vs. Temperature
www.irf.com
16
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
DT Propagation Delay (ns)
TITRIP Propagation Delay (ns)
600 450
Exp.
1500 1200 900
Exp.
300 150 0 -50 -25 0 25 50
o
600 300 0
75
100
125
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Temperature ( C)
Fig. 14. DT Propagation Delay vs. Temperature
Fig. 15. TITRIP Propagation Delay vs. Temperature
ITRIP to FAULT Propagation Delay (ns)
1000 800 600 400 200 0 -50 -25 0 25 50 75 100 125 Temperature (oC)
Exp.
TEN SD Propagation Delay (ns)
1200
1000 800 600
Exp.
400 200 0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Fig. 16. ITRIP to FAULT Propagation Delay vs. Temperature
RCIN Low On Resistance ( Ohm)
100 80 60 40 20 0 -50 -25 0 25 50
o
Fig. 17. TEN SD Propagation Delay vs. Temperature
FAULT Low On Resistance ( Ohm)
100 80 60 40 20 0 -50 -25 0 25 50
o
Exp.
Exp.
75
100
125
75
100
125
Temperature ( C)
Temperature ( C)
Fig. 18. RCIN Low On Resistance vs. Temperature
Fig. 19. FAULT Low On Resistance vs. Temperature
www.irf.com
17
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
VCC Quiescent Current (mA)
VBS Quiescent Current (uA)
5 4 3
Exp.
120 100 80 60 40 20 0
Exp.
2 1 0 -50 -25 0 25 50
o
75
100
125
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Temperature ( C)
Fig. 20. VCC Quiescent Current vs. Temperature
Fig. 21. VBS Quiescent Current vs. Temperature
12 10
VCCUV+ Threshold (V)
Exp.
12 10
VCCUV- Threshold (V)
-25 0 25 50 75 100 125
8 6 4 2 0 -50 Temperature (oC)
8 6 4 2 0
Exp.
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Fig. 22. VCCUV+ Threshold vs. Temperature
Fig. 23. VCCUV- Threshold vs. Temperature
10 9
VBSUV+ Threshold (V)
Exp.
10 9
VBSUV+ Threshold (V)
Exp.
8 7 6 5 -50 -25 0 25 50
o
8 7 6 5
75
100
125
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Temperature ( C)
Fig. 24. VBSUV+ Threshold vs. Temperature
Fig. 25. VBSUV- Threshold vs. Temperature
www.irf.com
18
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
800
800 600 ITRIP TH- (mV)
ITRIP TH+ (mV)
600
EXP.
Exp.
400 200 0
400
200 -50 -25 0 25 50 75 100 125 Temperature (oC)
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Fig. 26. ITRIP TH+ vs. Temperature
Fig. 27. ITRIP TH- vs. Temperature
IO+ L1 SC Pulsed Currentt (A)
IO- L1 SC Current (A)
0.30 0.25 0.20 0.15 0.10 0.05 0.00 -50 -25 0 25 50
o
Exp.
0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15
Exp.
75
100
125
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Temperature ( C)
Fig. 28. IO+ L1 SC Pulsed Current vs. Temperature
ITRIP Input Bias Current (uA) 16 12 8 4
Exp.
Fig. 29. IO- L1 SC Pulsed Current vs. Temperature
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Fig. 30. ITRIP Input Bias Current vs. Temperature
www.irf.com
19
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Case Outlines
www.irf.com
20
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
Case Outlines
www.irf.com
21
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
LOADED TAPE FEED DIRECTION
B
A
H
D F C
NOTE : CONTROLLING DIM ENSION IN M M
E G
CARRIER TAPE DIMENSION FOR Metric Code Min Max A 23.90 24.10 B 3.90 4.10 C 31.70 32.30 D 14.10 14.30 E 17.90 18.10 F 17.90 18.10 G 2.00 n/a H 1.50 1.60
44PLCC Imperial Min Max 0.94 0.948 0.153 0.161 1.248 1.271 0.555 0.562 0.704 0.712 0.704 0.712 0.078 n/a 0.059 0.062
F
D C E B A
G
H
REEL DIMENSIONS FOR 44PLCC Metric Code Min Max A 329.60 330.25 B 20.95 21.45 C 12.80 13.20 D 1.95 2.45 E 98.00 102.00 F n/a 38.4 G 34.7 35.8 H 32.6 33.1
Imperial Min Max 12.976 13.001 0.824 0.844 0.503 0.519 0.767 0.096 3.858 4.015 n/a 1.511 1.366 1.409 1.283 1.303
www.irf.com
22
IRS213(6,62,63,65,66,67,68)D(J&S)PbF
PRELIMINARY
ORDER INFORMATION
28-Lead PDIP IRS2136DPbF 28-Lead PDIP IRS21362DPbF 28-Lead PDIP IRS21363DPbF 28-Lead PDIP IRS21365DPbF 28-Lead PDIP IRS21366DPbF 28-Lead PDIP IRS21367DPbF 28-Lead PDIP IRS21368DPbF 28-Lead SOIC IRS2136DSPbF 28-Lead SOIC IRS21362DSPbF 28-Lead SOIC IRS21363DSPbF 28-Lead SOIC IRS21365DSPbF 28-Lead SOIC IRS21366DSPbF 28-Lead SOIC IRS21367DSPbF 28-Lead SOIC IRS21368DSPbF 44-Lead PLCC IRS2136DJPbF 44-Lead PLCC IRS21362DJPbF 44-Lead PLCC IRS21363DJPbF 44-Lead PLCC IRS21365DJPbF 44-Lead PLCC IRS21366DJPbF 44-Lead PLCC IRS21367DJPbF 44-Lead PLCC IRS21368DJPbF 28-Lead SOIC Tape & Reel IRS2136DSTRPbF 28-Lead SOIC Tape & Reel IRS21362DSTRPbF 28-Lead SOIC Tape & Reel IRS21363DSTRPbF 28-Lead SOIC Tape & Reel IRS21365DSTRPbF 28-Lead SOIC Tape & Reel IRS21366DSTRPbF 28-Lead SOIC Tape & Reel IRS21367DSTRPbF 28-Lead SOIC Tape & Reel IRS21368DSTRPbF 44-Lead PLCC Tape & Reel IRS2136DJTRPbF 44-Lead PLCC Tape & Reel IRS21362DJTRPbF 44-Lead PLCC Tape & Reel IRS21363DJTRPbF 44-Lead PLCC Tape & Reel IRS21365DJTRPbF 44-Lead PLCC Tape & Reel IRS21366DJTRPbF 44-Lead PLCC Tape & Reel IRS21367DJTRPbF 44-Lead PLCC Tape & Reel IRS21368DJTRPbF
WORLDWIDE HEADQUARTERS: 233 Kansas Street, El Segundo, CA 90245 Tel: (310) 252-7105 This part has been qualified per industrial level http://www.irf.com Data and specifications subject to change without notice. 5/19/2006
www.irf.com
23