0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRS21834SPBF

IRS21834SPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRS21834SPBF - HALF-BRIDGE DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IRS21834SPBF 数据手册
Data Sheet No. PD60265 IRS2183/IRS21834(S)PbF Features HALF-BRIDGE DRIVER Packages 8-Lead PDIP IRS2183 14-Lead PDIP IRS21834 • Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt • Gate drive supply range from 10 V to 20 V • Undervoltage lockout for both channels • 3.3 V and 5 V input logic compatible • Matched propagation delay for both channels • Logic and power ground +/- 5 V offset • Lower di/dt gate driver for better noise immunity • Output source/sink current capability 1.4 A/1.8 A immune 14-Lead SOIC IRS21834S 8-Lead SOIC Description IRS2183S The IRS2183/IRS21834 are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low Feature Comparison Crossside referenced output channels. ProDeadtime Ton/Toff Input conduction Ground Pins Part prietary HVIC and latch immune CMOS prevention logic (ns) (ns) logic technologies enable ruggedized mono2181 COM HIN/LIN no none 180/220 lithic construction. The logic input is 21814 VSS/COM compatible with standard CMOS or 2183 Internal 5000 COM HIN/LIN yes 180/220 21834 Program 400-5000 VSS/COM LSTTL output, down to 3.3 V logic. The 2184 Internal 5000 COM IN/SD yes 680/270 output drivers feature a high pulse cur21844 Program 400-5000 VSS/COM rent buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V. Typical Connection VCC up to 600 V VCC HIN VB HO VS LO up to 600 V TO LOAD HIN LIN COM LIN IRS2183 HO IRS21834 VCC HIN VCC HIN LIN DT VB VS TO LOAD LIN (Refer to Lead Assignment for correct pin VSS configuration) These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. RDT VSS COM LO www.irf.com 1 IRS2183/IRS21834(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO DT VIN VSS dVS/dt Definition High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Programmable deadtime pin voltage (IR21834 only) Logic input voltage (HIN & LIN ) Logic ground (IR21834 only) Allowable offset supply voltage transient (8-lead PDIP) (8-lead SOIC) (14-lead PDIP) (14-lead SOIC) (8-lead PDIP) (8-lead SOIC) (14-lead PDIP) (14-lead SOIC) Min. -0.3 VB - 20 VS - 0.3 -0.3 -0.3 Max. 620 (Note 1) VB + 0.3 VB + 0.3 20 (Note 1) VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.0 0.625 1.6 1.0 125 200 75 120 150 150 300 Units V VSS - 0.3 VSS - 0.3 VCC - 20 — — — — — — — — — — -50 — V/ns PD Package power dissipation @ TA ≤ +25 °C W RthJA Thermal resistance, junction to ambient °C/W TJ TS TL Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) °C Note 1: All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply. Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15 V differential. Symbol VB VS VHO VCC VLO VIN DT VSS TA Definition High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (HIN & LIN) Programmable deadtime pin voltage (IR21834 only) Logic ground (IR21834 only) Ambient temperature Min. V S + 10 Note 2 VS 10 0 VSS Max. VS + 20 600 VB 20 VCC VCC Units V VSS -5 -40 VCC 5 125 °C Note 2: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). www.irf.com 2 IRS2183/IRS21834(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified. Symbol ton toff MT tr tf DT Definition Turn-on propagation delay Turn-off propagation delay Delay matching | ton - toff Turn-on rise time Turn-off fall time Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) Min. — — Typ. 180 220 0 40 20 400 5 0 0 Max. Units Test Conditions 270 330 35 60 35 520 6 50 600 µs ns ns VS = 0 V RDT= 0 Ω RDT = 200 kΩ (IR21834) RDT=0 Ω RDT = 200kΩ (IR21834) VS = 0V VS = 0V or 600V | — — — 280 4 — — MDT Deadtime matching = | DTLO-HO - DTHO-LO | Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM, DT= V SS and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO- Definition Logic “1” input voltage for HIN & logic “0” for LIN Logic “0” input voltage for HIN & logic “1” for LIN High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current Min. Typ. Max. Units Test Conditions 2.5 — — — — 20 0.4 — — 8.0 7.4 0.3 1.4 1.8 — — — — — 60 1.0 25 — 8.9 8.2 0.7 1.9 2.3 — 0.8 1.2 0.2 50 150 1.6 60 1.0 9.8 9.0 — — A — VO = 0 V, PW ≤ 10 µs VO = 15 V, PW ≤ 10 µs V µA µA mA VIN = 0 V or 5 V HIN = 5 V, LIN = 0 V HIN = 0 V, LIN = 5 V VCC = 10 V to 20 V V IO = 0 A IO = 20 mA VB = VS = 600 V www.irf.com 3 IRS2183/IRS21834(S)PbF Functional Block Diagrams VB 2183 HV LEVEL SHIFTER UV DETECT R PULSE FILTER R S Q HO HIN VSS/COM LEVEL SHIFT VS PULSE GENERATOR DT DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT VCC +5V LO LIN VSS/COM LEVEL SHIFT DELAY COM VSS VB 21834 HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR UV DETECT R PULSE FILTER R S Q HO VS DT +5V DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT VCC LO LIN VSS/COM LEVEL SHIFT DELAY COM VSS www.irf.com 4 IRS2183/IRS21834(S)PbF Lead Definitions Symbol Description HIN LIN Logic input for high side gate driver output (HO), in phase (referenced to COM for IRS2183 and VSS for IRS21834) Logic input for low side gate driver output (LO), out of phase (referenced to COM for IRS2183 and VSS for IRS21834) Programmable deadtime lead, referenced to VSS. (IRS21834 only) Logic ground (IRS21834 only) High side floating supply High side gate driver output High side floating supply return Low side and logic fixed supply Low side gate driver output Low side return DT VSS VB HO VS VCC LO COM Lead Assignments 1 2 3 4 HIN LIN COM LO VB HO VS VCC 8 7 6 5 1 2 3 4 HIN LIN COM LO VB HO VS VCC 8 7 6 5 8-Lead PDIP 8-Lead SOIC IRS2183PbF 1 2 3 4 5 6 7 HIN LIN VSS DT COM LO VCC VB HO VS IRS2183SPbF 14 13 12 11 10 9 8 1 2 3 4 5 6 7 HIN LIN VSS DT COM LO VCC VB HO VS 14 13 12 11 10 9 8 14-Lead PDIP 14-Lead SOIC IRS21834PbF www.irf.com IRS21834SPbF 5 IRS2183/IRS21834(S)PbF LIN HIN 50% 50% LIN ton tr 90% toff 90% tf HO LO LO 10% 10% Figure 1. Input/Output Timing Diagram 50% 50% HIN ton tr 90% toff 90% tf HO 10% 10% Figure 2. Switching Time Waveform Definitions HIN LIN 50% 50% 90% HO LO DT LO-HO 10% DT HO-LO 90% 10% MDT= DT LO-HO - DT HO-LO Figure 3. Deadtime Waveform Definitions www.irf.com 6 IRS2183/IRS21834(S)PbF Turn-On Propagation Delay (ns) 500 400 300 M ax. Turn-On Propagation Delay (ns) 500 400 M ax. 300 Typ. 200 Typ. 200 100 0 10 12 14 16 18 20 Supply Voltage (V) Figure 4B. Turn-On Propagation Delay vs. Supply Voltage 100 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 4A. Turn-On Propagation Delay vs. Temperature Turn-Off Propagation Delay (ns) 600 500 400 300 200 M ax. Turn-Off Propagation Delay (ns) 600 500 400 300 200 100 0 10 12 14 16 18 20 Supply Voltage (V) Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage M ax. Typ. Typ. 100 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 5A. Turn-Off Propagation Delay vs. Temperature www.irf.com 7 IRS2183/IRS21834(S)PbF 120 Turn-On Rise Time (ns) 120 Turn-On Rise Time (ns) 100 80 60 40 20 0 -25 0 25 50 75 100 125 M ax. 100 80 60 40 20 0 -50 M ax. Typ. Typ. 10 12 14 16 18 20 Temperature (oC) Figure 6A. Turn-On Rise Time vs. Temperature Supply Voltage (V) Figure 6B. Turn-On Rise Time vs. Supply Voltage 80 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 60 40 M ax. 80 60 M ax. 40 Typ. 20 0 -50 Typ 20 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Figure 7A. Turn-Off Fall Time vs. Temperature Supply Voltage (V) Figure 7B. Turn-Off Fall Time vs. Supply Voltage www.irf.com 8 IRS2183/IRS21834(S)PbF 1100 900 Deadtime (ns) Deadtime (ns) 700 M ax. 1100 900 700 M ax. 500 300 Typ. Mi n. 500 300 100 Typ. Mi n. 100 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Figure 8A. Deadtime vs. Temperature Supply Voltage (V) Figure 8B. Deadtime vs. Supply Voltage 7 6 Deadtime (µs) 5 4 3 2 1 0 0 50 100 RDT (kΩ ) Figure 8C. Deadtime vs. RDT 150 200 M ax. Typ. Mi n. 6 Input Voltage (V) 5 4 3 2 1 0 -50 Min. -25 0 25 50 (oC) 75 100 125 Temperature Figure 9A. Logic "1" Input Voltage vs. Temperature www.irf.com 9 IRS2183/IRS21834(S)PbF 6 Input Voltage (V) 5 4 3 2 1 0 10 12 14 16 18 20 Min. 6 Logic "0" Input Voltage (V) 5 4 3 2 M ax. 1 0 -50 -25 0 25 50 o 75 100 125 V BAIS Supply Voltage (V) Figure 9B. Logic "1" Input oltage vs. Supply Voltage Temperature ( C) Figure 10A. Logic "0" Input Voltage vs. Temperature 6 Logic "0" Input Voltage (V) High Level Output (V) 5 4 3 2 1 0 -50 M ax. 5 4 3 2 M ax. 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 10B. Logic "0" Input Voltage vs. Supply Voltage -25 0 25 50 75 100 125 Temperature (oC) Figure 11A. High Level Output vs. Temperature www.irf.com 10 IRS2183/IRS21834(S)PbF 5 High Level Output (V) 0.5 Low Level Output (V) 0.4 0.3 Max. 4 3 2 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 11B. High Level Output vs. Supply Voltage M ax. 0.2 0.1 0.0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 12A. Low Level Output vs. Tem perature 0.5 Low Level Output (V) 0.4 0.3 Max. Offset Supply Leakage Current (µA) 500 400 300 200 100 M ax. 0.2 0.1 0.0 10 12 14 16 18 20 Supply Voltage (V) 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 13A. Offset Supply Leakage Current vs. Temperature Figure 12B. Low Level Output vs. Supply Voltage www.irf.com 11 IRS2183/IRS21834(S)PbF Offset Supply Leakage Current (µA) 500 400 300 200 100 M ax. V BS Supply Current (µA) 250 200 M ax. 150 100 50 0 -50 Typ. Mi n. 0 100 200 300 400 500 600 -25 0 25 50 75 100 125 VB Boost Voltage (V) Figure 13B. Offset Supply Leakage Current vs. VB Boost Voltage Temperature (oC) Figure 14A. VBS Supply Current vs. Temperature V BS Supply Current (µA) 250 V CC Supply Current (mA) 200 150 100 50 0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 14B. VBS Supply Current vs. VBS Floating Supply Voltage M ax. 5 4 3 2 1 Mi n. M ax. Typ. Typ. Mi n. 0 -50 -25 0 25 50 ( oC) 75 100 125 Temperature Figure 15A. V CC Supply Current vs. Tem perature www.irf.com 12 IRS2183/IRS21834(S)PbF Logic "1" Input Bias Current (µA) 5 VCC Supply Current (mA) 4 3 2 1 0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 15B. V CC Supply Current vs. V CC Supply Voltage 120 100 80 60 40 20 0 -50 M ax. Typ. -25 0 25 50 75 o 100 125 Temperature ( C) Figure 16A. Logic "1" Input Bias Current vs. Temperature Logic "1" Input Bias Current (µA) Logic "0" Input Bias Current (µA) 120 100 80 60 M ax. 5 4 3 2 M ax. 40 Typ. 20 0 10 12 14 16 18 20 Supply Voltage (V) Figure 16B. Logic "1" Input Bias Current vs. Supply Voltage 1 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 17A. Logic "0" Input Bias Current vs. Temperature www.irf.com 13 IRS2183/IRS21834(S)PbF Logic "0" Input Bias Current (µA) 5 4 3 2 M ax. UV Threshold (+) (V) V CC and V BS 12 11 10 9 8 7 6 -50 M ax. Typ. Mi n. 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 17B. Logic "0" Input Bias Current vs. Supply Voltage -25 0 25 50 75 100 125 Temperature (oC) Figure 18. VCC and VBS Undervoltage Threshold (+) vs. Temperature UVThreshold (-) (V) 11 10 M ax. Output Source Current (A) 12 5 4 3 Typ. 9 Typ. BS 8 Mi n. 2 1 0 -50 Mi n. V CC and V 7 6 -50 -25 0 25 50 o 75 100 125 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 19. VCC and VBS Undervoltage Threshold (-) vs. Temperature Temperature ( C) Figure 20A. Output Source Current vs. Temperature www.irf.com 14 IRS2183/IRS21834(S)PbF Output Source Current (A) 4 3 2 Typ. Output Sink Current (A) 5 5.0 4.0 3.0 2.0 Mi n. Typ. 1 Mi n. 0 10 12 14 16 18 20 Supply Voltage (V) Figure 20B. Output Source Current vs. Supply Voltage 1.0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 21A. Output Sink Current vs. Temperature Output Sink Current (A) 5 Temprature (oC) 4 3 2 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 21B. Output Sink Current vs. Supply Voltage 140 120 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 22. IR2S183 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 140 V 70 V 0V Typ. Mi n. www.irf.com 15 IRS2183/IRS21834(S)PbF 1 40 140 120 Temperature (oC) 100 140 V Temperature (oC) 1 20 1 00 140 V 80 80 60 40 70 V 0V 70 V 0V 60 40 20 20 1 1 0 1 00 1 000 1 Frequency (kHz) 10 100 1000 Frequency ( k Hz) Figure 23. IRS2183 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V Figure 24. IRS2183 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 140 V 70 V 0V 140 Temperature (oC) 120 100 80 60 40 20 140 V 70 V 0V 1000 1 10 100 1000 Frequency (kHz) Figure 25. IRS2183 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V Frequency (kHz) Figure 26. IRS21834 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V www.irf.com 16 IRS2183/IRS21834(S)PbF 140 Temperature (oC) Temperature (oC) 120 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 27. IRS21834 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 140 V 70 V 0V 140 120 100 140 V 80 60 40 20 1 10 100 70 V 0V 1000 Frequency (kHz) Figure 28. IRS21834 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V 140 Temperature (oC) 120 100 80 60 40 20 1 10 100 140 V 140 Temperature (oC) 120 100 80 60 40 20 140 V 70 V 0V 70 V 0V 1000 1 10 100 1000 Frequency (kHz) Figure 29. IRS21834 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V Frequency (kHz) Figure 30. IRS2183 S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V www.irf.com 17 IRS2183/IRS21834(S)PbF 140 Temperature (oC) 120 Temperature (oC) 140 V 140 120 140 V 70 V 0V 100 80 60 40 20 1 10 100 70 v 0V 100 80 60 40 20 1000 1 10 100 1000 Frequency (kHz) Figure 31. IRS2183S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V Frequency (kHz) Figure 32. IRS2183 S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V 140 Tempreture (oC) 120 100 80 60 40 20 1 10 140 V 70 V 0 V 140 Temperature (oC) 120 100 80 60 40 140 V 70 V 0V 100 1000 20 1 10 100 1000 Frequency (kHz) Frequency (kHz) Figure 33. IRS2183S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V Figure 34. IRS21834S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V www.irf.com 18 IRS2183/IRS21834(S)PbF 1 40 140 Temperature (oC) 120 100 80 60 40 140 V 70 V 0V Temperature (oC) 1 20 1 00 80 140 V 70 V 0V 60 40 20 20 1 1 0 1 00 1 000 1 10 100 1000 Frequency (kHz) Figure 35. IRS21834 S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V Frequency (kHz) Figure 36. IRS21834S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V 140 Temperature (oC) 120 100 80 60 40 20 1 10 100 140 V 70 V 0V 1000 Frequency (kHz) Figure 37. IRS21834S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V www.irf.com 19 IRS2183/IRS21834(S)PbF Case outlines 8-Lead PDIP 01-6014 01-3003 01 (MS-001AB) D A 5 B FOOTPRINT 8X 0.72 [.028] DIM A b c D INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A E 6.46 [.255] 1 2 3 4 e e1 H K L 8X 1.78 [.070] .050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e e1 3X 1.27 [.050] y A C 0.10 [.004] y K x 45° 8X b 0.25 [.010] NOTES: A1 CAB 8X L 7 8X c 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 8-Lead SOIC www.irf.com 01-6027 01-0021 11 (MS-012AA) 20 IRS2183/IRS21834(S)PbF 14-Lead PDIP 01-6010 01-3002 03 (MS-001AC) 14-Lead SOIC (narrow body) 01-6019 01-3063 00 (MS-012AB) www.irf.com 21 IRS2183/IRS21834(S)PbF Tape & Reel 8-lead SOIC LOAD ED TA PE FEED DIRECTION B A H D F C N OT E : CO NTROLLING D IM ENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 11 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5.5 5 0. 21 4 0 .2 18 E 6 .3 0 6.5 0 0. 24 8 0 .2 55 F 5 .1 0 5.3 0 0. 20 0 0 .2 08 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62 F D C E B A G H R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 14 .5 0 1 7. 10 0. 57 0 0 .6 73 H 12 .4 0 1 4. 40 0. 48 8 0 .5 66 www.irf.com 22 IRS2183/IRS21834(S)PbF Tape & Reel 14-lead SOIC LOAD ED TA PE FEED DIRECTION B A H D F C N OT E : CO NTROLLING D IM ENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 15 .7 0 1 6. 30 0. 61 8 0 .6 41 D 7 .4 0 7.6 0 0. 29 1 0 .2 99 E 6 .4 0 6.6 0 0. 25 2 0 .2 60 F 9 .4 0 9.6 0 0. 37 0 0 .3 78 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62 F D C E B A G H R E E L D IM E N S I O N S F O R 1 4 SO IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 2 2. 40 n /a 0 .8 81 G 18 .5 0 2 1. 10 0. 72 8 0 .8 30 H 16 .4 0 1 8. 40 0. 64 5 0 .7 24 www.irf.com 23 IRS2183/IRS21834(S)PbF LEADFREE PART MARKING INFORMATION Part number S IRxxxxxx Date code YWW? ?XXXX IR logo Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-Lead PDIP IRS2183PbF 8-Lead SOIC IRS2183SPbF 8-Lead SOIC Tape & Reel IRS2183STRPbF 14-Lead PDIP IRS21834PbF 14-Lead SOIC IRS21834SPbF 14-Lead SOIC Tape & Reel IRS21834STRPbF The SOIC-8 is MSL2 qualified. The SOIC-14 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 6/19/2006 www.irf.com 24
IRS21834SPBF 价格&库存

很抱歉,暂时无法提供与“IRS21834SPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货