Data Sheet No. PD60265
IRS2183/IRS21834(S)PbF
Features
HALF-BRIDGE DRIVER
Packages
8-Lead PDIP IRS2183 14-Lead PDIP IRS21834
• Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt • Gate drive supply range from 10 V to 20 V • Undervoltage lockout for both channels • 3.3 V and 5 V input logic compatible • Matched propagation delay for both channels • Logic and power ground +/- 5 V offset • Lower di/dt gate driver for better noise immunity • Output source/sink current capability 1.4 A/1.8 A
immune
14-Lead SOIC IRS21834S 8-Lead SOIC
Description
IRS2183S The IRS2183/IRS21834 are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low Feature Comparison Crossside referenced output channels. ProDeadtime Ton/Toff Input conduction Ground Pins Part prietary HVIC and latch immune CMOS prevention logic (ns) (ns) logic technologies enable ruggedized mono2181 COM HIN/LIN no none 180/220 lithic construction. The logic input is 21814 VSS/COM compatible with standard CMOS or 2183 Internal 5000 COM HIN/LIN yes 180/220 21834 Program 400-5000 VSS/COM LSTTL output, down to 3.3 V logic. The 2184 Internal 5000 COM IN/SD yes 680/270 output drivers feature a high pulse cur21844 Program 400-5000 VSS/COM rent buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V.
Typical Connection
VCC
up to 600 V
VCC
HIN
VB HO VS LO
up to 600 V
TO LOAD
HIN LIN COM
LIN
IRS2183
HO
IRS21834
VCC
HIN
VCC HIN LIN DT
VB VS
TO LOAD
LIN
(Refer to Lead Assignment for correct pin VSS configuration) These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
RDT
VSS
COM LO
www.irf.com
1
IRS2183/IRS21834(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB VS VHO VCC VLO DT VIN VSS dVS/dt
Definition
High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Programmable deadtime pin voltage (IR21834 only) Logic input voltage (HIN & LIN ) Logic ground (IR21834 only) Allowable offset supply voltage transient (8-lead PDIP) (8-lead SOIC) (14-lead PDIP) (14-lead SOIC) (8-lead PDIP) (8-lead SOIC) (14-lead PDIP) (14-lead SOIC)
Min.
-0.3 VB - 20 VS - 0.3 -0.3 -0.3
Max.
620 (Note 1) VB + 0.3 VB + 0.3 20 (Note 1) VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.0 0.625 1.6 1.0 125 200 75 120 150 150 300
Units
V
VSS - 0.3
VSS - 0.3 VCC - 20 — — — — — — — — — — -50 —
V/ns
PD
Package power dissipation @ TA ≤ +25 °C
W
RthJA
Thermal resistance, junction to ambient
°C/W
TJ TS TL
Junction temperature Storage temperature Lead temperature (soldering, 10 seconds)
°C
Note 1: All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply.
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15 V differential.
Symbol
VB VS VHO VCC VLO VIN DT VSS TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (HIN & LIN) Programmable deadtime pin voltage (IR21834 only) Logic ground (IR21834 only) Ambient temperature
Min.
V S + 10 Note 2 VS 10 0
VSS
Max.
VS + 20 600 VB 20 VCC
VCC
Units
V
VSS
-5 -40
VCC 5 125
°C
Note 2: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
www.irf.com
2
IRS2183/IRS21834(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified.
Symbol
ton toff MT tr tf DT
Definition
Turn-on propagation delay Turn-off propagation delay Delay matching | ton - toff Turn-on rise time Turn-off fall time Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO)
Min.
— —
Typ.
180 220 0 40 20 400 5 0 0
Max. Units Test Conditions
270 330 35 60 35 520 6 50 600 µs ns ns VS = 0 V RDT= 0 Ω RDT = 200 kΩ (IR21834) RDT=0 Ω RDT = 200kΩ (IR21834) VS = 0V VS = 0V or 600V
|
— — — 280 4 — —
MDT
Deadtime matching = | DTLO-HO - DTHO-LO |
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, DT= V SS and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO-
Definition
Logic “1” input voltage for HIN & logic “0” for LIN Logic “0” input voltage for HIN & logic “1” for LIN High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current
Min. Typ. Max. Units Test Conditions
2.5 — — — — 20 0.4 — — 8.0 7.4 0.3 1.4 1.8 — — — — — 60 1.0 25 — 8.9 8.2 0.7 1.9 2.3 — 0.8 1.2 0.2 50 150 1.6 60 1.0 9.8 9.0 — — A — VO = 0 V, PW ≤ 10 µs VO = 15 V, PW ≤ 10 µs V µA µA mA VIN = 0 V or 5 V HIN = 5 V, LIN = 0 V HIN = 0 V, LIN = 5 V VCC = 10 V to 20 V V IO = 0 A IO = 20 mA VB = VS = 600 V
www.irf.com
3
IRS2183/IRS21834(S)PbF
Functional Block Diagrams
VB
2183
HV LEVEL SHIFTER
UV DETECT R PULSE FILTER R S Q
HO
HIN
VSS/COM LEVEL SHIFT
VS
PULSE GENERATOR
DT
DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT
VCC
+5V
LO
LIN
VSS/COM LEVEL SHIFT
DELAY
COM
VSS
VB
21834
HIN
VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR
UV DETECT R PULSE FILTER R S Q
HO
VS
DT
+5V
DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT
VCC
LO
LIN
VSS/COM LEVEL SHIFT
DELAY
COM
VSS
www.irf.com
4
IRS2183/IRS21834(S)PbF
Lead Definitions
Symbol Description
HIN
LIN
Logic input for high side gate driver output (HO), in phase (referenced to COM for IRS2183 and VSS for IRS21834) Logic input for low side gate driver output (LO), out of phase (referenced to COM for IRS2183 and VSS for IRS21834) Programmable deadtime lead, referenced to VSS. (IRS21834 only) Logic ground (IRS21834 only) High side floating supply High side gate driver output High side floating supply return Low side and logic fixed supply Low side gate driver output Low side return
DT VSS VB HO VS VCC LO COM
Lead Assignments
1 2 3 4 HIN LIN COM LO VB HO VS VCC
8
7 6 5
1 2 3 4
HIN LIN COM LO
VB HO VS VCC
8
7 6 5
8-Lead PDIP
8-Lead SOIC
IRS2183PbF
1 2 3 4 5 6 7 HIN LIN VSS DT COM LO VCC VB HO VS
IRS2183SPbF
14
13 12 11 10 9 8 1 2 3 4 5 6 7 HIN LIN VSS DT COM LO VCC VB HO VS
14
13 12 11 10 9 8
14-Lead PDIP
14-Lead SOIC
IRS21834PbF
www.irf.com
IRS21834SPbF
5
IRS2183/IRS21834(S)PbF
LIN
HIN
50%
50%
LIN
ton
tr 90%
toff 90%
tf
HO
LO
LO
10%
10%
Figure 1. Input/Output Timing Diagram
50%
50%
HIN
ton tr 90% toff 90% tf
HO
10%
10%
Figure 2. Switching Time Waveform Definitions
HIN LIN
50%
50%
90%
HO LO
DT LO-HO
10% DT HO-LO
90%
10% MDT= DT LO-HO - DT
HO-LO
Figure 3. Deadtime Waveform Definitions
www.irf.com
6
IRS2183/IRS21834(S)PbF
Turn-On Propagation Delay (ns)
500 400 300
M ax.
Turn-On Propagation Delay (ns)
500 400
M ax.
300
Typ.
200
Typ.
200 100 0 10 12 14 16 18 20 Supply Voltage (V) Figure 4B. Turn-On Propagation Delay vs. Supply Voltage
100 0 -50
-25
0
25
50
75
100
125
Temperature (oC) Figure 4A. Turn-On Propagation Delay vs. Temperature
Turn-Off Propagation Delay (ns)
600 500 400 300 200
M ax.
Turn-Off Propagation Delay (ns)
600 500 400 300 200 100 0 10 12 14 16 18 20 Supply Voltage (V) Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage
M ax.
Typ.
Typ.
100 -50
-25
0
25
50
75
100
125
Temperature (oC) Figure 5A. Turn-Off Propagation Delay vs. Temperature
www.irf.com
7
IRS2183/IRS21834(S)PbF
120 Turn-On Rise Time (ns)
120 Turn-On Rise Time (ns) 100 80 60 40 20 0
-25 0 25 50 75 100 125
M ax.
100 80 60 40 20 0 -50
M ax. Typ.
Typ.
10
12
14
16
18
20
Temperature (oC) Figure 6A. Turn-On Rise Time vs. Temperature
Supply Voltage (V) Figure 6B. Turn-On Rise Time vs. Supply Voltage
80 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 60 40
M ax.
80 60
M ax.
40
Typ.
20 0 -50
Typ
20 0
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature (oC) Figure 7A. Turn-Off Fall Time vs. Temperature
Supply Voltage (V) Figure 7B. Turn-Off Fall Time vs. Supply Voltage
www.irf.com
8
IRS2183/IRS21834(S)PbF
1100 900 Deadtime (ns) Deadtime (ns) 700
M ax.
1100 900 700
M ax.
500 300
Typ. Mi n.
500 300 100
Typ. Mi n.
100 -50
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature (oC) Figure 8A. Deadtime vs. Temperature
Supply Voltage (V) Figure 8B. Deadtime vs. Supply Voltage
7 6 Deadtime (µs) 5 4 3 2 1 0 0 50 100 RDT (kΩ ) Figure 8C. Deadtime vs. RDT 150 200
M ax. Typ. Mi n.
6 Input Voltage (V) 5 4 3 2 1 0 -50
Min.
-25
0
25
50 (oC)
75
100
125
Temperature
Figure 9A. Logic "1" Input Voltage vs. Temperature
www.irf.com
9
IRS2183/IRS21834(S)PbF
6 Input Voltage (V) 5 4 3 2 1 0 10 12 14 16 18 20
Min.
6 Logic "0" Input Voltage (V) 5 4 3 2
M ax.
1 0 -50
-25
0
25
50
o
75
100
125
V BAIS Supply Voltage (V)
Figure 9B. Logic "1" Input oltage vs. Supply Voltage
Temperature ( C) Figure 10A. Logic "0" Input Voltage vs. Temperature
6 Logic "0" Input Voltage (V)
High Level Output (V)
5 4 3 2 1 0 -50
M ax.
5 4 3 2
M ax.
1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 10B. Logic "0" Input Voltage vs. Supply Voltage
-25
0
25
50
75
100
125
Temperature (oC) Figure 11A. High Level Output vs. Temperature
www.irf.com
10
IRS2183/IRS21834(S)PbF
5 High Level Output (V)
0.5 Low Level Output (V) 0.4 0.3
Max.
4 3 2 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 11B. High Level Output vs. Supply Voltage
M ax.
0.2 0.1 0.0 -50
-25
0
25
50
75
100
125
Temperature ( oC) Figure 12A. Low Level Output vs. Tem perature
0.5 Low Level Output (V) 0.4 0.3
Max.
Offset Supply Leakage Current (µA)
500 400 300 200 100
M ax.
0.2 0.1 0.0 10 12 14 16 18 20 Supply Voltage (V)
0 -50
-25
0
25
50
75
100
125
Temperature (oC) Figure 13A. Offset Supply Leakage Current vs. Temperature
Figure 12B. Low Level Output vs. Supply Voltage
www.irf.com
11
IRS2183/IRS21834(S)PbF
Offset Supply Leakage Current (µA)
500 400 300 200 100
M ax.
V BS Supply Current (µA)
250 200
M ax.
150 100 50 0 -50
Typ.
Mi n.
0 100
200
300
400
500
600
-25
0
25
50
75
100
125
VB Boost Voltage (V) Figure 13B. Offset Supply Leakage Current vs. VB Boost Voltage
Temperature (oC) Figure 14A. VBS Supply Current vs. Temperature
V BS Supply Current (µA)
250 V CC Supply Current (mA) 200 150 100 50 0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 14B. VBS Supply Current vs. VBS Floating Supply Voltage
M ax.
5 4 3 2 1
Mi n. M ax.
Typ.
Typ.
Mi n.
0 -50
-25
0
25
50 ( oC)
75
100
125
Temperature
Figure 15A. V CC Supply Current vs. Tem perature
www.irf.com
12
IRS2183/IRS21834(S)PbF
Logic "1" Input Bias Current (µA)
5 VCC Supply Current (mA) 4 3 2 1 0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 15B. V CC Supply Current vs. V CC Supply Voltage
120 100 80 60 40 20 0 -50
M ax. Typ.
-25
0
25
50
75
o
100
125
Temperature ( C) Figure 16A. Logic "1" Input Bias Current vs. Temperature
Logic "1" Input Bias Current (µA)
Logic "0" Input Bias Current (µA)
120 100 80 60
M ax.
5 4 3 2
M ax.
40
Typ.
20 0 10 12 14 16 18 20 Supply Voltage (V) Figure 16B. Logic "1" Input Bias Current vs. Supply Voltage
1 0 -50
-25
0
25
50
75
100
125
Temperature (oC) Figure 17A. Logic "0" Input Bias Current vs. Temperature
www.irf.com
13
IRS2183/IRS21834(S)PbF
Logic "0" Input Bias Current (µA)
5 4 3 2
M ax.
UV Threshold (+) (V) V CC and V
BS
12 11 10 9 8 7 6 -50
M ax. Typ. Mi n.
1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 17B. Logic "0" Input Bias Current vs. Supply Voltage
-25
0
25
50
75
100
125
Temperature (oC) Figure 18. VCC and VBS Undervoltage Threshold (+) vs. Temperature
UVThreshold (-) (V)
11 10
M ax.
Output Source Current (A)
12
5 4 3
Typ.
9
Typ.
BS
8
Mi n.
2 1 0 -50
Mi n.
V CC and V
7 6 -50
-25
0
25
50
o
75
100
125
-25
0
25
50
o
75
100
125
Temperature ( C) Figure 19. VCC and VBS Undervoltage Threshold (-) vs. Temperature
Temperature ( C) Figure 20A. Output Source Current vs. Temperature
www.irf.com
14
IRS2183/IRS21834(S)PbF
Output Source Current (A)
4 3 2
Typ.
Output Sink Current (A)
5
5.0 4.0 3.0 2.0
Mi n.
Typ.
1
Mi n.
0 10 12 14 16 18 20 Supply Voltage (V) Figure 20B. Output Source Current vs. Supply Voltage
1.0 -50
-25
0
25
50
o
75
100
125
Temperature ( C) Figure 21A. Output Sink Current vs. Temperature
Output Sink Current (A)
5 Temprature (oC) 4 3 2 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 21B. Output Sink Current vs. Supply Voltage
140 120 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 22. IR2S183 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V
140 V 70 V 0V
Typ.
Mi n.
www.irf.com
15
IRS2183/IRS21834(S)PbF
1 40
140 120 Temperature (oC) 100
140 V
Temperature (oC)
1 20
1 00
140 V
80
80 60 40
70 V 0V
70 V 0V
60
40
20
20 1 1 0 1 00 1 000
1
Frequency (kHz)
10
100
1000
Frequency ( k Hz)
Figure 23. IRS2183 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V
Figure 24. IRS2183 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
140 120 Temperature (oC) 100 80 60 40 20 1 10 100
140 V 70 V 0V
140 Temperature (oC) 120 100 80 60 40 20
140 V 70 V 0V
1000
1
10
100
1000
Frequency (kHz) Figure 25. IRS2183 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
Frequency (kHz) Figure 26. IRS21834 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V
www.irf.com
16
IRS2183/IRS21834(S)PbF
140 Temperature (oC) Temperature (oC) 120 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 27. IRS21834 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V
140 V 70 V 0V
140 120 100
140 V
80 60 40 20 1 10 100
70 V 0V
1000
Frequency (kHz) Figure 28. IRS21834 vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
140 Temperature (oC) 120 100 80 60 40 20 1 10 100
140 V
140 Temperature (oC) 120 100 80 60 40 20
140 V 70 V 0V
70 V
0V
1000
1
10
100
1000
Frequency (kHz) Figure 29. IRS21834 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
Frequency (kHz) Figure 30. IRS2183 S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V
www.irf.com
17
IRS2183/IRS21834(S)PbF
140 Temperature (oC) 120 Temperature (oC)
140 V
140 120
140 V 70 V
0V
100 80 60 40 20 1 10 100
70 v 0V
100 80 60 40 20
1000
1
10
100
1000
Frequency (kHz) Figure 31. IRS2183S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V
Frequency (kHz) Figure 32. IRS2183 S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
140 Tempreture (oC) 120 100 80 60 40 20 1 10
140 V 70 V 0 V
140 Temperature (oC) 120 100 80 60 40
140 V 70 V 0V
100
1000
20 1 10 100 1000 Frequency (kHz)
Frequency (kHz) Figure 33. IRS2183S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
Figure 34. IRS21834S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V
www.irf.com
18
IRS2183/IRS21834(S)PbF
1 40
140 Temperature (oC) 120 100 80 60 40
140 V 70 V 0V
Temperature (oC)
1 20
1 00
80
140 V 70 V 0V
60
40
20
20 1 1 0 1 00 1 000
1
10
100
1000
Frequency (kHz) Figure 35. IRS21834 S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V
Frequency (kHz) Figure 36. IRS21834S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V
140 Temperature (oC) 120 100 80 60 40 20 1 10 100
140 V 70 V 0V
1000
Frequency (kHz) Figure 37. IRS21834S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V
www.irf.com
19
IRS2183/IRS21834(S)PbF
Case outlines
8-Lead PDIP
01-6014 01-3003 01 (MS-001AB)
D A 5
B
FOOTPRINT 8X 0.72 [.028]
DIM A b c D
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574
MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
E
6.46 [.255]
1
2
3
4
e e1 H K L
8X 1.78 [.070]
.050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e e1
3X 1.27 [.050]
y
A C 0.10 [.004] y
K x 45°
8X b 0.25 [.010]
NOTES:
A1 CAB
8X L 7
8X c
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8-Lead SOIC
www.irf.com
01-6027 01-0021 11 (MS-012AA)
20
IRS2183/IRS21834(S)PbF
14-Lead PDIP
01-6010 01-3002 03 (MS-001AC)
14-Lead SOIC (narrow body)
01-6019 01-3063 00 (MS-012AB)
www.irf.com
21
IRS2183/IRS21834(S)PbF
Tape & Reel 8-lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D F C
N OT E : CO NTROLLING D IM ENSION IN MM
E G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 11 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5.5 5 0. 21 4 0 .2 18 E 6 .3 0 6.5 0 0. 24 8 0 .2 55 F 5 .1 0 5.3 0 0. 20 0 0 .2 08 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62
F
D C E B A
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 14 .5 0 1 7. 10 0. 57 0 0 .6 73 H 12 .4 0 1 4. 40 0. 48 8 0 .5 66
www.irf.com
22
IRS2183/IRS21834(S)PbF
Tape & Reel 14-lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D F C
N OT E : CO NTROLLING D IM ENSION IN MM
E G
C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 15 .7 0 1 6. 30 0. 61 8 0 .6 41 D 7 .4 0 7.6 0 0. 29 1 0 .2 99 E 6 .4 0 6.6 0 0. 25 2 0 .2 60 F 9 .4 0 9.6 0 0. 37 0 0 .3 78 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62
F
D C E B A
G
H
R E E L D IM E N S I O N S F O R 1 4 SO IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 2 2. 40 n /a 0 .8 81 G 18 .5 0 2 1. 10 0. 72 8 0 .8 30 H 16 .4 0 1 8. 40 0. 64 5 0 .7 24
www.irf.com
23
IRS2183/IRS21834(S)PbF
LEADFREE PART MARKING INFORMATION
Part number
S IRxxxxxx
Date code
YWW? ?XXXX
IR logo
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Lot Code (Prod mode - 4 digit SPN code)
Assembly site code Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2183PbF 8-Lead SOIC IRS2183SPbF 8-Lead SOIC Tape & Reel IRS2183STRPbF 14-Lead PDIP IRS21834PbF 14-Lead SOIC IRS21834SPbF 14-Lead SOIC Tape & Reel IRS21834STRPbF
The SOIC-8 is MSL2 qualified. The SOIC-14 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 6/19/2006
www.irf.com
24