Data Sheet No. PD60255
IRS21851SPbF
• Gate drive supply range from 10 V to 20 V • Undervoltage lockout for VBS and V CC • 3.3 V and 5 V input logic compatible • Tolerant to negative transient voltage • Matched propagation delays for all channels • RoHS compliant
Features
SINGLE HIGH SIDE DRIVER IC
Product Summary
VOFFSET IO+/VOUT ton/off (typ.) 600 V max. 4A/ 4A 10 V - 20 V 170 ns & 170 ns
Description
The IRS21851 is a high voltage, high speed power MOSFET and IGBT single high-side driver with propagation delay matched output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The floating logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic and can be operated up to 600 V above the ground. The output driver features a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high- side configuration, which operates up to 600 V.
Package
8-Lead SOIC IRS21851
Typical Connection
up to 600V
VCC IN
VCC IN COM
VB HO VS
TO LOAD
(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IRS21851SPbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VC C V IN VB VS VHO dVs /dt PD RthJA TJ TS TL
Definition
Low-side supply voltage Logic input voltage (HIN) High-side floating well supply voltage High-side floating well supply return voltage Floating gate drive output voltage Allowable VS offset supply transient relative to COM Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds)
Min.
- 0.3 COM -0.3 - 0.3 V B - 20 VS - 0.3 — — — -55 -55 —
Max.
20 (Note 1) VCC + 0.3 620 (Note 1) VB + 0.3 VB + 0.3 50 1.25 100 150 150 300
Units
V
V/ns W °C/W °C
Note 1: All supplies are fully tested at 25 V. An internal 20 V clamp exists for each supply.
Recommended Operating Conditions
For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM. The offset rating are tested with supplies of (VCC-COM)=(VB-VS)=15 V.
Symbol
VC C V IN VB VS VHO TA HIN input voltage
Definition
Low-side supply voltage High-side floating well supply voltage High-side floating well supply offset voltage Floating gate drive output voltage Ambient temperature
Min.
10 COM V S + 10 Note 2 VS -40
Max.
20 VC C VS + 20 600 VB 125
Units
V
°C
Note 2: Logic operational for VS of -5 V to 600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
w ww.irf.com
2
IRS21851SPbF
Dynamic Electrical Characteristics
Symbol
ton t off tr tf
(VCC-COM)=(VB-VS)=15 V, TA = 25 oC. CL = 1000 pF unless otherwise specified. All parameters are referenced to COM.
Definition
Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time
Min. Typ. Max. Units Test Conditions
— — — — 160 160 15 15 210 210 40 40 ns (VS -COM) = 0 V (VS -COM) = 600 V
Static Electrical Characteristics
(VCC-COM)=(VB-V S)=15 V. The VIN, VTH, and IIN parameters are referenced to COM. The VO and IO parameters are referenced respective VS and are applicale to the respective output leads HO. The VCC parameters are referenced to COM. The VBSUV parameters are referenced to VS.
Symbol
VCCUV+ VCCUVVBSUV+ VBSUVILK IQBS IQCC V IH V IL VOH, HO VOL, HO IIN+ IINIO+, HO IO-, HO
Definition
VCC s upply undervoltage positive going threshold VCC s upply undervoltage negative going threshold VBS s upply undervoltage positive going threshold VBS s upply undervoltage negative going threshold High-side floating well offset supply leakage current Quiescent VBS supply current Quiescent VCC s upply current Logic “1” input voltage Logic “0” input voltage HO high level output voltage, VBIAS - VO HO low level output voltage, VO Logic “1” input bias current Logic “0” input bias current Output high short circuit pulsed current HO Output low short circuit pulsed current HO
Min. Typ. Max. Units Test Conditions
8.0 7.4 8.0 7.4 — — — 2.5 — — — — — — — 8.9 8.2 8.9 8.2 — 80 120 — — 20 10 10 0 4 4 9.8 9.0 9.8 9.0 50 150 240 — 0.8 60 30 20 5 — A — V mV µA IO = 2 mA VHIN = 5 V VHIN = 0 V VO = 0 V, VIN = 0 V PW ≤ 10 µs VO = 15 V, VIN = 15 V PW ≤ 10 µs µA VB = VS = 600 V HIN = 0 V or 5 V V
w ww.irf.com
3
IRS21851SPbF
Functional Block Diagram
VCC 5V VREG
VCCUV DETECT
COM
HIGHSIDE CHANNLE1
VB
HIN
PULSE GEN
LEVEL SHIFT UP
FILTER, LATCH UV DETECT
DRIVER
HO
VS
Lead Definitions
Symbol VCC COM
VB HO VS HIN
Description Low-side supply voltage Ground High-side drive floating supply High-side driver outputs High voltage floating supply return Logic inputs for high-side gate driver output (in phase)
Lead Assignments
1 2 3 4 COM VCC HIN VB HO VS 8 7 6 5
IRS21851S
8- Lead SOIC
w ww.irf.com
4
IRS21851PbF
50% IN t on tr
50%
t off
tf
OUT
90% 10%
90% 10%
Figure 1. Switching Time Waveforms
HIN
HO
Figure 2. Input/Output Timing Diagram
w ww.irf.com
5
IRS21851SPbF
T ur n- O n Propagation Delay (ns )
T ur n- O n Propagation Delay (ns )
300 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 Max Typ
300 250 200 150 100 50 0 10 12 14 16 18 20 Supply Voltage (V) Figure 3B. Turn-On Propagation Delay vs. S upply Voltage Max Typ
Temperature (°C) Figure 3A. Tu rn-On Propag ation Delay vs . Temperature
T urn- Off Propagation Delay ( ns )
T ur n- O ff Propagation Delay (ns )
300 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 Max Typ
250 200
Max Typ
150 100 50 0 10 12 14 16 18 20 Supply Voltage (V) Figure 4B. Turn-Off Propagation Delay vs. S upply Voltage
Temperature (°C) Figure 4A. Tu rn-Off Propag ation Delay vs . Temperature
w ww.irf.com
6
IRS21851SPbF
45 Tur n- O n Ris e Time ( ns ) 35 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 125 Typ Tur n- O n Ris e Time ( ns ) 40 Max
60 50 40 30 20 10 0 10 12 14 16 18 20 Temperature (°C) Figure 5A. Turn-On Rise Time vs. Temperature Supply Voltage (V) Figure 5B. Turn-On Rise Time vs. Supply V oltage Typ Max
45 T ur n- O ff F all T ime ( ns ) 35 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 125 Typ T urn- Off Fall Time ( ns) 40 Max
60 50 40 30 20 10 0 10 12 14 16 18 20 Temperature (°C) Figure 6A. Turn-Off Fall Time vs. Temperature Supply Voltage (V) Figure 6B. Turn-Off Fall Tim e vs. Supply V oltage Typ Max
w ww.irf.com
7
IRS21851SPbF
3 Logic "1" Input Voltag e ( V) 2.5 2 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 Max Logic "1" Input Voltag e (V)
3 2.5 2 1.5 1 0.5 0 10 12 14 16 18 20 Temperature (°C) Figure 7A. L ogic "1" Input Voltage vs. Temperature Supply Voltage (V) Figure 7B. Logic "1" Input Voltage vs. Supply Voltage Max
0.9 Logic "0" Input Voltag e ( V) Logic "0" Input Voltag e (V) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -50 -25 0 25 50 75 100 125 Min
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 10 12 14 16 18 20 Temperature (°C) Figure 8A. L ogic "0" Input Voltage vs. Temperature Supply Voltage (V) Figure 8B. Logic "0" Input Voltage vs. Supply V oltage Min
w ww.irf.com
8
IRS21851SPbF
90 High Lev el Output ( m V) 70 60 50 40 30 20 10 0 -50 Typ Max High Lev el O utput (m V) 80
70 60 50 40 30 20 10 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (°C) Figure 9A. High Level Output vs. Temperature (Io = 2 mA) Supply Voltage (V) Figure 9B. High Level Outpu t vs. Supply Voltage (Io =2 mA) Typ Max
40 Low L ev el O utput ( m V) 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 125 Typ Low L ev el O utput ( m V) 35 Max
35 30 25 20 15 10 5 0 10 12 14 16 18 20 Temperature (°C) Figure 10A. Low Level Output vs. Temperature (Io=2 m A) Supply Voltage (V) Figure 10B. Low Level Output vs. Supply Vo ltage (Io=2 m A) Typ Max
w ww.irf.com
9
IRS21851SPbF
O ffs e t Supply Leak a ge Cur rent ( µA)
250 200 150 100 50 0 -50 Max -25 0 25 50 75 100 125
O ffs e t Supply Leak a ge Cur rent ( µA)
300
60 50 40 30 20 10 0 10 12 14 16 18 20 Supply Voltage (V) Max
Temperature (°C) Figure 11A. Offset Su pply Leakage Current vs. Temperature
Figure 11B. Offse t Supply Leak age Current vs. S upply Voltage
180 V B S Supp ly Cur r ent ( µA ) V B S Supp ly Curr ent ( µA ) 160 140 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 Typ Max
250 200 150 100 50 0 10 12 14 16 18 20 Temperature (°C) Figure 12A. VBS Supply Current vs. Temperature Supply Voltage (V) Figure 12B. V BS Supply Curre nt vs. Supply Voltage Max Typ
w ww.irf.com
10
IRS21851SPbF
300 V CC Supp ly Cur r ent ( µA ) 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 Typ Max V CC Supp ly Curr ent ( µA )
350 300 250 200 150 100 50 0 10 12 14 16 18 20 Temperature (°C) Figure 13A. VCC Supply Current vs. Temperature Supply Voltage (V) Figure 13B. V CC Supply Curre nt vs. Supply Voltage Max Typ
Logic "0" Input Bias C urr ent ( µA)
5 4 3 2 1 0 -50
Max
Logic "0" Input Bias C ur r ent ( µA)
6
6 5 4 3 2 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 14B. Log ic "0" Input Bias Current vs. S upply Voltage Max
-25
0
25
50
75
100
125
Temperature (°C) Figure 14A. Lo gic "0" Input Bias Current vs . Temperature
w ww.irf.com
11
IRS21851SPbF
Lo gic "0" Input Bia s Curr ent ( µA)
5 4 3 2 1 0 -50
Max
Logic "0" Input Bias C urrent (µA)
6
6 5 4 3 2 1 0 10 12 14 16 18 20 Supply Voltage (V) Max
-25
0
25
50
75
100
125
Temperature (°C) Figure 15A. Logic "0" Input Bias Current vs. Temperature
Figure 15B. Logic "0" Input Bias Current vs. Voltage
12 V CC UVL O Thres hold ( +) ( V) 11 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Max Typ Min VCC UVL O T hr es hold ( - ) ( V)
12 11 10 9 8 7 6 -50 Max Typ Min
-25
0
25
50
75
100
125
Temperature (°C) Figure 16. V CC Undervoltage Threshold (+) v s. Temperature
Temperature (°C) Figure 17. V CC Undervoltage Threshold (-) v s. Temperature
w ww.irf.com
12
IRS21851SPbF
12 V B S UVL O Thres hold ( +) ( V) VB S UVL O T hr es hold ( - ) ( V) 11 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Max Typ Min
12 11 10 9 8 7 6 -50 Max Typ Min
-25
0
25
50
75
100
125
Temperature (°C) Figure 18. V BS Undervoltage Threshold (+) v s. Temperature
Temperature (°C) Figure 19. V BS Undervoltage Threshold (-) v s. Temperature
Outp ut Sourc e Cur r e nt ( A)
O utp ut Sour c e Cur r e nt ( A)
5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 -50
Typ
6 5 4 3 2 1 0 10 12 14 16 18 20 Typ
-25
0
25
50
75
100
125
Temperature (°C) Figure 20A. Output Source Current vs. Temperature
Supply Voltage (V) Figure 20B. Outp ut Source Cur rent vs. Supply V oltage
w ww.irf.com
13
IRS21851SPbF
O utp ut Sink Curr ent ( A)
3.5 3 2.5 2 1.5 1 0.5 0 -50
O utp ut Sink Cur r ent ( A)
5 4.5 4
Typ
6 5 4 3 2 1 0 10 12 14 16 18 20 Typ
-25
0
25
50
75
100
125
Temperature (°C) Figure 21A. Output Sink Current vs. Temperature
Supply Voltage (V) Figure 21B. Out put Sink Curre nt vs. Supply Voltage
Case outline
D A 8 7 6 5 B
FOOTPRINT 8X 0.72 [.028] DIM A b c D INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
5 H 0.25 [.010] A
E 6.46 [.255] e e1 H K L y
1
2
3
4
.050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e e1
3X 1.27 [.050]
8X 1.78 [.070]
A
K x 45° C 0.10 [.004] y 8X c
8X b 0.25 [.010]
NOTES:
A1 CAB
8X L 7
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8-Lead SOIC
w ww.irf.com
01-6027
14
IRS21851SPbF
Tape & Reel 8-lead SOIC
LOAD ED TA PE FEED DIRECTION
B
A
H
D F C
N OT E : CO NTROLLING D IM ENSION IN M M
E G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M e tr ic Im p e r ia l Co d e M in M ax M in M ax A 7 .9 0 8 .1 0 0. 31 1 0 .3 1 8 B 3 .9 0 4 .1 0 0. 15 3 0 .1 6 1 C 1 1 .7 0 1 2 . 30 0 .4 6 0 .4 8 4 D 5 .4 5 5 .5 5 0. 21 4 0 .2 1 8 E 6 .3 0 6 .5 0 0. 24 8 0 .2 5 5 F 5 .1 0 5 .3 0 0. 20 0 0 .2 0 8 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1 .6 0 0. 05 9 0 .0 6 2
F
D C E B A
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N M e tr ic Im p e r ia l Co d e M in M ax M in M ax A 32 9.60 3 3 0 .2 5 1 2 .9 76 1 3 .0 0 1 B 2 0 .9 5 2 1 . 45 0. 82 4 0 .8 4 4 C 1 2 .8 0 1 3 . 20 0. 50 3 0 .5 1 9 D 1 .9 5 2 .4 5 0. 76 7 0 .0 9 6 E 9 8 .0 0 1 0 2 .0 0 3. 85 8 4 .0 1 5 F n /a 1 8 . 40 n /a 0 .7 2 4 G 1 4 .5 0 1 7 . 10 0. 57 0 0 .6 7 3 H 1 2 .4 0 1 4 . 40 0. 48 8 0 .5 6 6
w ww.irf.com
15
IRS21851SPbF
LEADFREE PART MARKING INFORMATION
Part number
IRxxxxxx S YWW? ?XXXX
Lot Code (Prod mode - 4 digit SPN code) IR logo
Date code
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Assembly site code Per SCOP 200-002
ORDER INFORMATION
8-Lead SOIC order IRS21851SPbF 8-Lead SOIC Tape & Reel IRS21851STRPbF
The SOIC-8 is MSL2 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 12/4/2006
w ww.irf.com
16
很抱歉,暂时无法提供与“IRS21851SPBF”相匹配的价格&库存,您可以联系我们找货
免费人工找货