0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IS25LP512M-RMLE

IS25LP512M-RMLE

  • 厂商:

    ISSI(芯成半导体)

  • 封装:

    SOIC-16_10.3X7.5MM

  • 描述:

    IC FLASH 512MBIT SPI/QUAD 16SOIC

  • 数据手册
  • 价格&库存
IS25LP512M-RMLE 数据手册
IS25LP512M IS25WP512M 512Mb SERIAL FLASH MEMORY 133/112MHZ MULTI I/O SPI & QUAD I/O QPI DTR INTERFACE IS25LP512M IS25WP512M 512Mb SERIAL FLASH MEMORY 133/112MHZ MULTI I/O SPI & QUAD I/O QPI DTR INTERFACE FEATURES  Industry Standard Serial Interface - IS25LP512M: 512Mbit/64Mbyte - IS25WP512M: 512Mbit/64Mbyte - 3 or 4 Byte Addressing Mode - Supports Standard SPI, Fast, Dual, Dual I/O, Quad, Quad I/O, SPI DTR, Dual I/O DTR, Quad I/O DTR, and QPI - Software & Hardware Reset - Supports Serial Flash Discoverable Parameters (SFDP)  High Performance Serial Flash (SPI) - 50MHz Normal Read - Up to133Mhz Fast Read: 133MHz (max) for 3.0V 112MHz (max) for 1.8V - Up to 66MHz DTR (Dual Transfer Rate) - Equivalent Throughput of 532 Mb/s - Selectable Dummy Cycles - Configurable Drive Strength - Supports SPI Modes 0 and 3 - More than 100,000 Erase/Program Cycles - More than 20-year Data Retention  Flexible & Efficient Memory Architecture - Chip Erase with Uniform Sector/Block Erase (4/32/64KB or 4/32/256 KB)(2) - Program 1 to 256 or 512 Byte per Page(2) - Program/Erase Suspend & Resume  Low Power with Wide Temp. Ranges - Single Voltage Supply IS25LP: 2.30V to 3.60V IS25WP: 1.70V to 1.95V - 13 mA Active Read Current - 21 µA Standby Current - 1 µA Deep Power Down - Temp Grades: Extended: -40°C to +105°C Auto Grade (A3): -40°C to +125°C  Advanced Security Protection - Software and Hardware Write Protection - Advanced Sector/Block Protection - Top/Bottom Block Protection - Power Supply Lock Protection - 4x256 Byte Dedicated Security Area with OTP User-lockable Bits - 128 bit Unique ID for Each Device (Call Factory)  Industry Standard Pin-out & Packages(1) - M =16-pin SOIC 300mil(2) - L = 8-contact WSON 8x6mm(2) - G = 24-ball TFBGA 6x8mm (4x6 ball array)(2) - H = 24-ball TFBGA 6x8mm (5x5 ball array)(2) Notes: 1. Call Factory for other package options available. 2. For optional 512 Byte Page size with 256 KB Block size, see the Ordering Information.  Efficient Read and Program modes - Low Instruction Overhead Operations - Continuous Read 8/16/32/64 Byte Burst Wrap - Selectable Burst Length - QPI for Reduced Instruction Overhead - Data Learning Pattern for training in DTR operation Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 2 IS25LP512M IS25WP512M GENERAL DESCRIPTION The IS25LP512M and IS25WP512M Serial Flash memory offers a versatile storage solution with high flexibility and performance in a simplified pin count package. ISSI’s “Industry Standard Serial Interface” Flash is for systems that require limited space, a low pin count, and low power consumption. The device is accessed through a 4-wire SPI Interface consisting of a Serial Data Input (SI), Serial Data Output (SO), Serial Clock (SCK), and Chip Enable (CE#) pins, which can also be configured to serve as multi-I/O (see pin descriptions). The device supports Dual and Quad I/O as well as standard, Dual Output, and Quad Output SPI. Clock frequencies of up to 133MHz allow for equivalent clock rates of up to 532MHz (133MHz x 4) which equates to 66.5Mbytes/s of data throughput. The IS25xP series of Flash adds support for DTR (Double Transfer Rate) commands that transfer addresses and read data on both edges of the clock. These transfer rates can outperform 16-bit Parallel Flash memories allowing for efficient memory access to support XIP (execute in place) operation. Initial state of the memory array is erased (all bits are set to 1) when shipped from the factory. QPI (Quad Peripheral Interface) supports 2-cycle instruction further reducing instruction times. Pages can be erased in groups of 4Kbyte sectors, 32Kbyte blocks, 64K/256Kbyte blocks, and/or the entire chip. The uniform sector and block architecture allows for a high degree of flexibility so that the device can be utilized for a broad variety of applications requiring solid data retention. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 3 IS25LP512M IS25WP512M TABLE OF CONTENTS FEATURES ........................................................................................................................................................... 2 GENERAL DESCRIPTION ................................................................................................................................... 3 TABLE OF CONTENTS ........................................................................................................................................ 4 1. PIN CONFIGURATION .................................................................................................................................. 7 2. PIN DESCRIPTIONS ..................................................................................................................................... 8 3. BLOCK DIAGRAM ....................................................................................................................................... 10 4. SPI MODES DESCRIPTION ....................................................................................................................... 11 5. SYSTEM CONFIGURATION ....................................................................................................................... 13 5.1 BLOCK/SECTOR ADDRESSES ........................................................................................................... 13 5.2 Serial Flash Discoverable Parameters .................................................................................................. 15 6. REGISTERS ................................................................................................................................................ 21 6.1 STATUS REGISTER ............................................................................................................................. 21 6.2 FUNCTION REGISTER ......................................................................................................................... 26 6.3 READ REGISTER AND EXTENDED REGISTER ................................................................................. 28 6.3.1 READ REGISTER ......................................................................................................................... 28 6.3.2 EXTENDED READ REGISTER ..................................................................................................... 31 6.4 BANK ADDRESS REGISTER ............................................................................................................... 33 6.5 ADVANCED SECTOR/BLOCK PROTECTION (ASP) RELATED REGISTER ..................................... 34 6.5.1 ADVANCED SECTOR/BLOCK PROTECTION REGISTER (ASPR) ..................................... 34 6.5.2 PASSWORD REGISTER........................................................................................................ 35 6.5.3 PPB LOCK REGISTER........................................................................................................... 35 6.5.4 PB REGISTER ............................................................................................................................... 36 7. 6.5.5 DYB REGISTER ..................................................................................................................... 36 6.5.6 DATA LEARNING PATTERN REGISTER.............................................................................. 37 PROTECTION MODE.................................................................................................................................. 38 7.1 HARDWARE WRITE PROTECTION..................................................................................................... 38 7.2 SOFTWARE WRITE PROTECTION ..................................................................................................... 38 7.2.1 BLOCK PROTECTION BITS ......................................................................................................... 38 7.2.2 ADVANCED SECTOR/BLOCK PROTECTION (ASP) .................................................................. 39 8. DEVICE OPERATION ................................................................................................................................. 47 8.1 COMMAND OVERVIEW ....................................................................................................................... 47 8.2 COMMAND SET SUMMARY ................................................................................................................ 48 8.3 NORMAL READ OPERATION (NORD, 03h or 4NORD, 13h) .............................................................. 57 8.4 FAST READ OPERATION (FRD, 0Bh or 4FRD, 0Ch) .......................................................................... 60 8.5 HOLD OPERATION ............................................................................................................................... 64 8.6 FAST READ DUAL I/O OPERATION (FRDIO, BBh or 4FRDIO, BCh) ................................................. 65 8.7 FAST READ DUAL OUTPUT OPERATION (FRDO, 3Bh or 4FRDO, 3Ch).......................................... 69 8.8 FAST READ QUAD OUTPUT OPERATION (FRQO, 6Bh or 4FRQO 6Ch) ......................................... 72 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 4 IS25LP512M IS25WP512M 8.9 FAST READ QUAD I/O OPERATION (FRQIO, EBh or 4FRQIO, ECh) ................................................ 75 8.10 PAGE PROGRAM OPERATION (PP, 02h or 4PP, 12h)..................................................................... 82 8.11 QUAD INPUT PAGE PROGRAM OPERATION (PPQ, 32h/38h or 4PPQ, 34h/3Eh) ......................... 85 8.12 ERASE OPERATION .......................................................................................................................... 86 8.13 SECTOR ERASE OPERATION (SER, D7h/20h or 4SER, 21h) ......................................................... 87 8.14 BLOCK ERASE OPERATION (BER32K:52h or 4BER32K:5Ch, BER64K/256K:D8h or 4BER64K/256K:DCh) .................................................................................................................................. 89 8.15 CHIP ERASE OPERATION (CER, C7h/60h) ...................................................................................... 92 8.16 WRITE ENABLE OPERATION (WREN, 06h) ..................................................................................... 93 8.17 WRITE DISABLE OPERATION (WRDI, 04h) ...................................................................................... 94 8.18 READ STATUS REGISTER OPERATION (RDSR, 05h) .................................................................... 95 8.19 WRITE STATUS REGISTER OPERATION (WRSR, 01h) .................................................................. 96 8.20 READ FUNCTION REGISTER OPERATION (RDFR, 48h) ................................................................ 97 8.21 WRITE FUNCTION REGISTER OPERATION (WRFR, 42h).............................................................. 98 8.22 ENTER QUAD PERIPHERAL INTERFACE (QPI) MODE OPERATION (QPIEN,35h; QPIDI,F5h) ... 99 8.23 PROGRAM/ERASE SUSPEND & RESUME ..................................................................................... 100 8.24 ENTER DEEP POWER DOWN (DP, B9h) ........................................................................................ 103 8.25 RELEASE DEEP POWER DOWN (RDPD, ABh) .............................................................................. 104 8.26 SET READ PARAMETERS OPERATION (SRPNV: 65h, SRPV: C0h/63h) ..................................... 105 8.27 SET EXTENDED READ PARAMETERS OPERATION (SERPNV: 85h, SERPV: 83h) ................... 107 8.28 READ READ PARAMETERS OPERATION (RDRP, 61h) ................................................................ 108 8.29 READ EXTENDED READ PARAMETERS OPERATION (RDERP, 81h) ......................................... 109 8.30 CLEAR EXTENDED READ REGISTER OPERATION (CLERP, 82h) .............................................. 110 8.31 READ PRODUCT IDENTIFICATION (RDID, ABh) ........................................................................... 111 8.32 READ PRODUCT IDENTIFICATION BY JEDEC ID OPERATION (RDJDID, 9Fh; RDJDIDQ, AFh) ................................................................................................................................................................... 113 8.33 READ DEVICE MANUFACTURER AND DEVICE ID OPERATION (RDMDID, 90h) ....................... 114 8.34 READ UNIQUE ID NUMBER (RDUID, 4Bh) ..................................................................................... 115 8.35 READ SFDP OPERATION (RDSFDP, 5Ah) ..................................................................................... 116 8.36 NO OPERATION (NOP, 00h) ............................................................................................................ 116 8.37 SOFTWARE RESET (RESET-ENABLE (RSTEN, 66h) AND RESET (RST, 99h)) AND HARDWARE RESET ....................................................................................................................................................... 117 8.38 SECURITY INFORMATION ROW ..................................................................................................... 118 8.39 INFORMATION ROW ERASE OPERATION (IRER, 64h) ................................................................ 119 8.40 INFORMATION ROW PROGRAM OPERATION (IRP, 62h) ............................................................ 120 8.41 INFORMATION ROW READ OPERATION (IRRD, 68h) .................................................................. 121 8.42 FAST READ DTR MODE OPERATION (FRDTR, 0Dh or 4FRDTR, 0Eh) ........................................ 122 8.43 FAST READ DUAL IO DTR MODE OPERATION (FRDDTR, BDh or 4FRDDTR, BEh) .................. 127 8.44 FAST READ QUAD IO DTR MODE OPERATION IN SPI MODE (FRQDTR, EDh or 4FRQDTR, EEh) ................................................................................................................................................................... 131 8.45 SECTOR LOCK/UNLOCK FUNCTIONS ........................................................................................... 139 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 5 IS25LP512M IS25WP512M 8.46 READ BANK ADDRESS REGISTER OPERATION (RDBR: 16h/C8h) ............................................ 142 8.47 WRITE BANK ADDRESS REGISTER OPERATION (WRBRNV: 18h, WRBRV: 17h/C5h) ............. 143 8.48 ENTER 4-BYTE ADDRESS MODE OPERATION (EN4B, B7h) ....................................................... 144 8.49 EXIT 4-BYTE ADDRESS MODE OPERATION (EX4B, 29h) ............................................................ 145 8.50 READ DYB OPERATION (RDDYB, FAh or 4RDDYB, E0h) ............................................................. 146 8.51 WRITE DYB OPERATION (WRDYB, FBh or 4WRDYB, E1h) .......................................................... 148 8.52 READ PPB OPERATION (RDPPB, FCh or 4RDPPB, E2h) ............................................................. 150 8.53 PROGRAM PPB OPERATION (PGPPB, FDh or 4PGPPB, E3h) ..................................................... 151 8.54 ERASE PPB OPERATION (ERPPB, E4h) ........................................................................................ 153 8.55 READ ASP OPERATION (RDASP, 2Bh) .......................................................................................... 154 8.56 PROGRAM ASP OPERATION (PGASP, 2Fh) .................................................................................. 155 8.57 READ PPB LOCK BIT OPERATION (RDPLB, A7h) ......................................................................... 156 8.58 WRITE PPB LOCK BIT OPERATION (WRPLB, A6h)....................................................................... 157 8.59 SET FREEZE BIT OPERATION (SFRZ, 91h) ................................................................................... 158 8.60 READ PASSWORD OPERATION (RDPWD, E7h) ........................................................................... 159 8.61 PROGRAM PASSWORD OPERATION (PGPWD, E8h) .................................................................. 160 8.62 UNLOCK PASSWORD OPERATION (UNPWD, E9h) ...................................................................... 161 8.63 GANG SECTOR/BLOCK LOCK OPERATION (GBLK, 7Eh) ............................................................ 162 8.64 GANG SECTOR/BLOCK UNLOCK OPERATION (GBUN, 98h) ....................................................... 163 8.65 DATA LEARNING PATTERN (DLP).................................................................................................. 164 8.66 PROGRAM NVDLR OPERATION (PNVDLR, 43h)........................................................................... 167 8.67 WRITE VDLR OPERATION (WRVDLR, 4Ah) ................................................................................... 168 8.68 READ DLP OPERATION (RDDLP, 41h) ........................................................................................... 169 9. ELECTRICAL CHARACTERISTICS.......................................................................................................... 170 9.1 ABSOLUTE MAXIMUM RATINGS (1) .................................................................................................. 170 9.2 OPERATING RANGE .......................................................................................................................... 170 9.3 DC CHARACTERISTICS ..................................................................................................................... 171 9.4 AC MEASUREMENT CONDITIONS ................................................................................................... 172 9.5 Pin CAPACITANCE ............................................................................................................................. 172 9.6 AC CHARACTERISTICS ..................................................................................................................... 173 9.7 SERIAL INPUT/OUTPUT TIMING ....................................................................................................... 175 9.8 POWER-UP AND POWER-DOWN ..................................................................................................... 177 9.9 PROGRAM/ERASE PERFORMANCE ................................................................................................ 178 9.10 RELIABILITY CHARACTERISTICS .................................................................................................. 178 10. PACKAGE TYPE INFORMATION ........................................................................................................ 179 10.1 8-CONTACT ULTRA-THIN SMALL OUTLINE NO-LEAD (WSON) PACKAGE 8x6mm (L).............. 179 10.2 16-LEAD PLASTIC SMALL OUTLINE PACKAGE (300 MILS BODY WIDTH) (M) ........................... 180 10.3 24-BALL THIN PROFILE FINE PITCH BGA 6x8mm 4x6 BALL ARRAY (G) .................................... 181 10.4 24-BALL THIN PROFILE FINE PITCH BGA 6x8mm 5x5 BALL ARRAY (H) .................................... 182 11. ORDERING INFORMATION – Valid Part Numbers ............................................................................. 183 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 6 IS25LP512M IS25WP512M 1. PIN CONFIGURATION (1) HOLD# or RESET# (IO3) Vcc 1 16 SCK 2 15 SI (IO0) RESET#/NC 3 14 NC NC 4 13 NC NC 5 12 NC NC 6 11 NC CE# 7 10 GND SO (IO1) 8 9 CE# 1 8 Vcc SO (IO1) 2 7 RESET# (IO3)(1) WP# (IO2) 3 6 SCK GND 4 5 SI (IO0) WP# (IO2) 8-contact WSON 8x6mm 16-pin SOIC 300mil Top View, Balls Facing Down Top View, Balls Facing Down A1 A2 A3 A4 NC NC NC RESET#/NC B1 B2 B3 B4 NC SCK GND VCC C1 C2 C3 C4 NC CE# NC WP#(IO2) D1 D2 D3 D4 NC SO(IO1) SI(IO0) HOLD# or RESET# (IO3) (1) E1 E2 E3 E4 NC NC NC NC F1 F2 F3 F4 NC NC NC NC 24-ball TFBGA 6x8mm (4x6 ball array) (Package: G) Note: 1. HOLD# or A2 A3 NC NC A4 A5 B1 B2 B3 B4 B5 NC SCK GND VCC NC C1 C2 C3 C4 C5 NC CE# NC WP#(IO2) NC RESET#/NC D1 D2 D3 D4 NC SO(IO1) SI(IO0) HOLD# or RESET# (IO3) NC D5 (1) NC E1 E2 E3 E4 E5 NC NC NC NC NC 24-ball TFBGA 6x8mm (5x5 ball array) (Package: H) The pin can be configured as Hold# (IO3) or Reset# (IO3) by setting P7 bit of the Read Register if A4 ball in BGA or Pin#3 in 16-SOIC is DNU instead of Dedicated RESET#. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 7 IS25LP512M IS25WP512M 2. PIN DESCRIPTIONS SYMBOL TYPE DESCRIPTION Chip Enable: The Chip Enable (CE#) pin enables and disables the devices operation. When CE# is high the device is deselected and output pins are in a high impedance state. When deselected the devices non-critical internal circuitry power down to allow minimal levels of power consumption while in a standby state. CE# INPUT When CE# is pulled low the device will be selected and brought out of standby mode. The device is considered active and instructions can be written to, data read, and written to the device. After power-up, CE# must transition from high to low before a new instruction will be accepted. Keeping CE# in a high state deselects the device and switches it into its low power state. Data will not be accepted when CE# is high. SI (IO0), SO (IO1) INPUT/OUTPUT Serial Data Input, Serial Output, and IOs (SI, SO, IO0, and IO1): This device supports standard SPI, Dual SPI, and Quad SPI operation. Standard SPI instructions use the unidirectional SI (Serial Input) pin to write instructions, addresses, or data to the device on the rising edge of the Serial Clock (SCK). Standard SPI also uses the unidirectional SO (Serial Output) to read data or status from the device on the falling edge of the serial clock (SCK). In Dual and Quad SPI mode, SI and SO become bidirectional IO pins to write instructions, addresses or data to the device on the rising edge of the Serial Clock (SCK) and read data or status from the device on the falling edge of SCK. Quad SPI instructions use the WP# and HOLD# pins as IO2 and IO3 respectively. WP# (IO2) INPUT/OUTPUT Write Protect/Serial Data IO (IO2): The WP# pin protects the Status Register from being written in conjunction with the SRWD bit. When the SRWD is set to “1” and the WP# is pulled low, the Status Register bits (SRWD, QE, BP3, BP2, BP1, BP0) are write-protected and vice-versa for WP# high. When the SRWD is set to “0”, the Status Register is not write-protected regardless of WP# state. When the QE bit is set to “1”, the WP# pin (Write Protect) function is not available since this pin is used for IO2. HOLD# or RESET#/Serial Data IO (IO3): When the QE bit of Status Register is set to “1”, HOLD# pin or RESET# is not available since it becomes IO3. The Device without Dedicated RESET#: When QE=0, the pin acts as HOLD# or RESET# and either one can be selected by the P7 bit setting in Read Register. HOLD# will be selected if P7=0 (Default) and RESET# will be selected if P7=1. The Device with Dedicated RESET#: HOLD# (IO3) or RESET# (IO3) - When QE=0 and Dedicated RESET# is Enabled (Default), the pin acts as HOLD# regardless of the P7 bit setting in Read Register. - When QE=0 and Dedicated RESET# is Disabled, the pin acts as HOLD# or RESET# and either one can be selected by the P7 bit setting in Read Register. HOLD# will be selected if P7=0 (Default) and RESET# will be selected if P7=1. INPUT/OUTPUT The HOLD# pin allows the device to be paused while it is selected. It pauses serial communication by the master device without resetting the serial sequence. The HOLD# pin is active low. When HOLD# is in a low state and CE# is low, the SO pin will be at high impedance. Device operation can resume when HOLD# pin is brought to a high state. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 8 IS25LP512M IS25WP512M SYMBOL TYPE DESCRIPTION RESET#: This dedicated RESET# is available in 24-ball BGA package. RESET# INPUT SCK INPUT Vcc POWER GND GROUND NC Unused The RESET# pin is a hardware RESET signal. When RESET# is driven HIGH, the memory is in the normal operating mode. When RESET# is driven LOW, the memory enters reset mode and output is High-Z. If RESET# is driven LOW while an internal WRITE, PROGRAM, or ERASE operation is in progress, data may be lost. Dedicated RESET# function can be Disabled when bit 0 of Function Register = 1. It has an internal pull-up resistor and may be left floating if not used. Serial Data Clock: Synchronized Clock for input and output timing operations. Power: Device Core Power Supply Ground: Connect to ground when referenced to Vcc NC: Pins labeled “NC” stand for “No Connect”. Not internally connected. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 9 IS25LP512M IS25WP512M 3. BLOCK DIAGRAM Control Logic High Voltage Generator Status Register I/O Buffers and Data Latches 256 Bytes Page Buffer WP# (IO2) SI (IO0) SO (IO1) (1) HOLD# or RESET# (IO3) RESET# Y-Decoder X-Decoder SCK Serial Peripheral Interface CE# Memory Array Address Latch & Counter Note: 1: In case of device without dedicated RESET#, when QE=0, the pin acts as HOLD# or RESET# and either one can be selected by the P7 bit setting in Read Register. HOLD# will be selected if P7=0 (Default) and RESET# will be selected if P7=1. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 10 IS25LP512M IS25WP512M 4. SPI MODES DESCRIPTION Multiple IS25LP512M devices or multiple IS25WP512M devices can be connected on the SPI serial bus and controlled by a SPI Master, i.e. microcontroller, as shown in Figure 4.1. The devices support either of two SPI modes: Mode 0 (0, 0) Mode 3 (1, 1) The difference between these two modes is the clock polarity. When the SPI master is in stand-by mode, the serial clock remains at “0” (SCK = 0) for Mode 0 and the clock remains at “1” (SCK = 1) for Mode 3. Please refer to Figure 4.2 and Figure 4.3 for SPI and QPI mode. In both modes, the input data is latched on the rising edge of Serial Clock (SCK), and the output data is available from the falling edge of SCK. Figure 4.1 Connection Diagram among SPI Master and SPI Slaves (Memory Devices) SDO SPI interface with (0,0) or (1,1) SDI SCK SCK SO SI SCK SO SI SCK SO SI SPI Master (i.e. Microcontroller) CS3 CS2 SPI Memory Device CS1 CE# SPI Memory Device CE# HOLD# WP# or RESET# Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 SPI Memory Device CE# WP# HOLD# or RESET# WP# HOLD# or RESET# 11 IS25LP512M IS25WP512M Figure 4.2 SPI Mode Support SCK Mode 0 (0,0) SCK Mode 3 (1,1) MSB SI SO MSB Figure 4.3 QPI Mode Support CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK Mode 0 3-byte Address Mode Bits Data 1 Data 2 Data 3 IO0 C4 C0 20 16 12 8 4 0 4 0 4 0 4 0 4 0 ... IO1 C5 C1 21 17 13 9 5 1 5 1 5 1 5 1 5 1 ... IO2 C6 C2 22 18 14 10 6 2 6 2 6 2 6 2 6 2 ... IO3 C71 C3 23 1 19 15 11 7 3 71 3 71 3 71 3 71 3 ... Note1: MSB (Most Significant Bit) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 12 IS25LP512M IS25WP512M 5. SYSTEM CONFIGURATION The memory array is divided into uniform 4 Kbyte sectors or uniform 32/64 Kbyte blocks (a block consists of eight/sixteen adjacent sectors respectively). Also optional uniform 32/256 Kbyte blocks are available with 512B page size. See ordering table for more detail information. Table 5.1 illustrates the memory map of the device. The Status Register controls how the memory is protected. 5.1 BLOCK/SECTOR ADDRESSES Table 5.1 Block/Sector Addresses (Block Size = 32KB/64KB) Memory Density Block No. (64Kbyte) Block No. (32Kbyte) Block 0 Block 0 Block 1 Block 2 Block 1 Block 3 Block 4 Block 2 Block 5 512Mb : 000 0000h – 000 0FFFh : : 000 F000h – 000 FFFFh 001 0000h – 001 0FFFh : : Sector 31 Sector 32 : : Sector 47 : 4 4 : : 4 : 001 F000h – 001 FFFFh 002 0000h – 002 0FFFh : : 002 F000h – 002 FFFFh : : : Sector 8160 : : 4 : : 1FE 0000h – 1FE 0FFFh : : Sector 8175 Sector 8176 : : Sector 8191 4 4 : : 4 1FE F000h – 1FE FFFFh 1FF 0000h – 1FF 0FFFh : : 1FF F000h – 1FF FFFFh : : : Sector 16352 : : Sector 16367 4 : : 4 3FE 0000h – 3FE 0FFFh : : 3FE F000h – 3FE FFFFh Sector 16368 : : Sector 16383 4 : : 4 3FF 0000h – 3FF 0FFFh : : Block 1020 Block 510 Block 1021 Block 1022 Block 511 Block 1023 : Sector 0 : : Sector 15 Sector 16 : Sector Size (Kbyte) 4 : : 4 4 : Sector No. : Block 2044 Block 1022 Block 2045 Block 2046 Block 1023 Block 2047 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Address Range : 3FF F000h – 3FF FFFFh 13 IS25LP512M IS25WP512M Table 5.2 Block/Sector Addresses (Block Size = 32KB/256KB) Memory Density Block No. (256Kbyte) Block No. (32Kbyte) Block 0 Block 1 Block 2 Block 3 Block 0 Block 4 Block 5 Block 6 Block 7 : 512Mb Block 1017 : : Sector 31 Sector 32 : : Sector 47 Sector 48 Block 1023 Block 2041 Block 2042 Block 2043 Block 255 Block 2044 Block 2045 Block 2046 Block 2047 Address Range 000 0000h – 000 0FFFh : : 000 F000h – 000 FFFFh 001 0000h – 001 0FFFh : : 001 F000h – 001 FFFFh 002 0000h – 002 0FFFh : : 002 F000h – 002 FFFFh 003 0000h – 003 0FFFh : : 003 F000h – 003 FFFFh : : : Sector 8128 : : Sector 8143 4 : : 4 1FC 0000h – 1FC 0FFFh : : 1FC F000h – 1FCF FFFh : : : Sector 8176 : : Sector 8191 4 : : 4 1FF 0000h – 1FF 0FFFh : : 1FF F000h – 1FF FFFFh : : : Sector 16320 : : Sector 16335 Sector 16336 : : Sector 16351 Sector 16352 : : 4 : : 4 3FC 0000h – 3FC 0FFFh : : 3FC F000h – 3FC FFFFh 3FD 0000h – 3FD 0FFFh : : 3FD F000h – 3FD FFFFh 3FE 0000h – 3FE 0FFFh : : Sector 16367 Sector 16368 : : Sector 16383 4 4 : : 4 Sector 63 : Block 2040 Sector Size (Kbyte) 4 : : 4 4 : : 4 4 : : 4 : Block 1022 : Sector 0 : : Sector 15 Sector 16 : Block 1016 Block 127 Sector No. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 4 : : 3FE F000h – 3FE FFFFh 3FF 0000h – 3FF 0FFFh : : 3FF F000h – 3FF FFFFh 14 IS25LP512M IS25WP512M 5.2 SERIAL FLASH DISCOVERABLE PARAMETERS The Serial Flash Discoverable Parameters (SFDP) standard defines the structure of the SFDP database within the memory device. SFDP is the standard of JEDEC JESD216. The JEDEC-defined header with Parameter ID FF00h and related Basic Parameter Table is mandatory. Additional parameter headers and tables are optional. Table 5.3 Signature and Parameter Identification Data Values Description SFDP Signature SFDP Revision Number of Parameter Headers (NPH) Unused Parameter ID LSB Parameter Minor Revision Parameter Major Revision Parameter Table Length (in DWPRDs) Basic Flash Parameter Table Pointer (PTP) Parameter ID MSB Parameter ID LSB Parameter Minor Revision Parameter Major Revision Parameter Table Length (in DWPRDs) Parameter Table Pointer (PTP) Parameter ID MSB Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Minor Major Address (Byte) 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h Address (Bit) 7:0 15:8 23:16 31:24 7:0 15:8 23:16 31:24 7:0 15:8 23:16 31:24 7:0 15:8 23:16 31:24 7:0 15:8 23:16 31:24 7:0 15:8 23:16 31:24 15 Data 53h 46h 44h 50h 06h 01h 01h FFh 00h 06h 01h 10h 30h 00h 00h FFh 84h 0h 1h 02h 80h 00h 00h FFh IS25LP512M IS25WP512M Table 5.4 JEDEC Basic Flash Parameter Table Description Minimum Sector Erase Sizes Write Granularity Volatile Status Register Block Protect bits Write Enable Instruction Select for writing to Volatile Status Register Unused 4KB Erase Instruction Supports (1-1-2) Fast Read Address Bytes Supports Double Transfer Rate (DTR) Clocking Supports (1-2-2) Fast Read Supports (1-4-4) Fast Read Supports (1-1-4) Fast Read Unused Reserved Address (Byte) 30h Address (Bit) 1:0 2 3 Data 01b 1b 0b 4 0b 33h 7:5 15:8 16 18:17 19 20 21 22 23 31:24 111b 20h 1b 01b 1b 1b 1b 1b 1b FFh Flash memory Density (bits) 34h 35h 36h 7:0 15:8 23:16 FFh FFh FFh Flash memory Density 37h 31:24 1Fh 4:0 7:5 15:8 20:16 23:21 31:24 00100b 010b EBh 01000b 000b 6Bh 4:0 7:5 15:8 20:16 23:21 31:24 01000b 000b 3Bh 00000b 100b BBh 1-4-4 Fast Read Wait Cycle Count 1-4-4 Fast Read Mode bit Cycle Count 1-4-4 Fast Read Instruction 1-1-4 Fast Read Wait Cycle Count 1-1-4 Fast Read Mode bit Cycle Count 1-1-4 Fast Read Instruction 1-1-2 Fast Read Wait Cycle Count 1-1-2 Fast Read Mode bit Cycle Count 1-1-2 Fast Read Instruction 1-2-2 Fast Read Wait Cycle Count 1-2-2 Fast Read Mode bit Cycle Count 1-2-2 Fast Read Instruction Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 31h 32h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh 16 IS25LP512M IS25WP512M Table 5.4 JEDEC Basic Flash Parameter Table (Continued) Address (Bit) 0 3:1 4 7:5 31:8 0b 111b 1b 111b FFFFFFh 15:0 20:16 23:21 31:24 FFFFh 00000b 000b FFh 4Bh 15:0 20:16 23:21 31:24 FFFFh 00100b 010b EBh Erase Type 1 Size (4KB) Erase Type 1 Instruction Erase Type 2 Size (32KB) Erase Type 2 Instruction 4Ch 4Dh 4Eh 4Fh 7:0 15:8 23:16 31:24 0Ch 20h 0Fh 52h Erase Type 3 Size (64KB) Erase Type 3 Instruction Erase Type 4 Size (256KB) Erase Type 4 Instruction 50h 51h 52h 53h 7:0 15:8 23:16 31:24 10h(00h(1)) D8h(FFh(1)) 00h(12h(1)) FFh(D8h(1)) 3:0 8:4 10:9 15:11 17:16 0010b 00110b 01b 01000b 01b 01010b (00000b(1)) 01b(00b(1)) 00000b (00101b(1)) 00b(10b(1)) Description Supports (2-2-2) Fast Read Reserved Supports (4-4-4) Fast Read Reserved Reserved Address (Byte) 40h 43:41h Reserved 2-2-2 Fast Read Wait Cycle Count 2-2-2 Fast Read Mode bit Cycle Count 2-2-2 Fast Read Instruction 45:44h Reserved 4-4-4 Fast Read Wait Cycle Count 4-4-4 Fast Read Mode bit Cycle Count 4-4-4 Fast Read Instruction 49:48h 46h 47h 4Ah Multiplier from typical erase time to maximum erase time Sector Type 1 ERASE time (typ) Sector Type 2 ERASE time (typ) 57:54h Sector Type 3 ERASE time (typ) 22:18 24:23 Sector Type 4 ERASE time (typ) 29:25 31:30 Note: 1. Only for option K (256KB Block Size instead of 64KB) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 17 Data IS25LP512M IS25WP512M Table 5.4 JEDEC Basic Flash Parameter Table (Continued) Description Multiplier from typical time to maximum time for page or byte PROGRAM Address (Byte) 5Ah:59h Chip Erase, Typical time Suspend in-progress program max latency 5Bh 5Ch 5Eh:5Dh Erase Resume to Suspend Interval Suspend in-progress erase max latency 0010b 13 17:14 18 22:19 23 1000b (1001b(1)) 00100b (01001b(1)) 1b 1001b 0b 0000b 0b 28:24 10011b 30:29 31 10b 1b 3:0 7:4 8 12:9 17:13 19:18 23:20 28:24 30:29 31 1100b 1110b 1b 0110b 01100b 10b 0110b 01100b 10b 0b 12:8 Byte Program Typical time, additional byte Prohibited Operations During Program Suspend Prohibited Operations During Erase Suspend Reserved Program Resume to Suspend Interval 3:0 7:4 Page Program Typical time Units Reserved Data 58h Page size Byte Program Typical time, first byte Address (Bit) 5Fh Suspend /Resume supported Program Resume Instruction Program Suspend Instruction Erase Resume Instruction Erase Suspend Instruction 60h 61h 62h 63h 7:0 15:8 23:16 31:24 7Ah 75h 7Ah 75h Reserved Status Register Polling Device Busy 64h 1:0 7:2 11b 111101b Note: 1. Only for option K (512B Page Size instead of 256B) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 18 IS25LP512M IS25WP512M Table 5.4 JEDEC Basic Flash Parameter Table (Continued) Address (Byte) Description Exit Deep Power-down to next operation delay 3V 1.8V Exit Deep Power-down to next operation delay Units Exit Deep Power-down Instruction Enter Deep Power-down Instruction Deep Power-down Supported 4-4-4 mode disable sequences (QPIDI) 4-4-4 mode enable sequences (QPIEN) 0-4-4 Mode Supported 0-4-4 Mode Exit Method 0-4-4 Mode Entry Method: Quad Enable Requirements (QER) Hold or RESET Disable Reserved Volatile or Non-Volatile Register and Write Enable (WREN) Instruction for Status Register 1 Reserved Soft Reset and Rescue Sequence Support Exit 4-Byte Addressing Enter 4-Byte Addressing Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Address (Bit) 14:13 22:15 30:23 31 00010b 00100b 01b ABh B9h 0b 3:0 8:4 9 15:10 19:16 22:20 23 31:24 1010b 00100b 1b 110000b 1100b 010b 0b FFh 6:0 1100001b 7 13:8 23:14 31:24 1b 110000b 1111101000b 10101001b 12:8 67h:65h 69h:68h 6Ah 6Bh 6Ch 6Eh:6Dh 6Fh Data 19 IS25LP512M IS25WP512M Table 5.5. Parameter Table (1): 4-byte Address Instruction Tables Description Support for (1-1-1) READ Command, Instruction = 13h Support for (1-1-1) FAST_READ Command, Instruction = 0Ch Support for (1-1-2) FAST_READ Command, Instruction = 3Ch Support for (1-2-2) FAST_READ Command, Instruction = BCh Support for (1-1-4) FAST_READ Command, Instruction = 6Ch Support for (1-4-4) FAST_READ Command, Instruction = ECh Support for (1-1-1) Page Program Command, Instruction = 12h Support for (1-1-4) Page Program Command, Instruction = 34h Support for (1-4-4) Page Program Command, Instruction = 3Eh Support for Erase Command-Type 1 Support for Erase Command-Type 2 Support for Erase Command-Type 3 Support for Erase Command-Type 4 Support for (1-1-1) DTR_READ Command, Instruction = 0Eh Support for (1-2-2) DTR_READ Command, Instruction = BEh Support for (1-4-4) DTR_READ Command, Instruction = EEh Support for volatile individual sector lock Read Command (E0h) Support for volatile individual sector lock Write Command (E1h) Support for non-volatile individual sector lock Read Command (E2h) Support for non-volatile individual sector lock Write Command (E3h) Reserved Reserved Sector Erase Instruction for Sector Type I Sector Erase Instruction for Sector Type 2 Sector Erase Instruction for Sector Type 3 Sector Erase Instruction for Sector Type 4 Note: 1. Address (Byte) Address (Bit) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1b 1b 1b 1b 1b 1b 1b 1b 0b 1b 1b 1b (0b(1)) 0b (1b(1)) 1b 1b 1b 1b 1b 18 1b 19 1b 83h 23:20 31:24 1111b FFh 84h 85h 86h 87h 7:0 15:8 23:16 31:24 21h 5Ch DCh (FFh(1)) FFh (DCh(1)) 80h 81h 82h Only for option K (256KB Block Size instead of 64KB) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 20 Data IS25LP512M IS25WP512M 6. REGISTERS The device has many sets of Registers such as Status, Function, Read, and so on. When the register is read continuously, the same data is output repeatedly until CE# goes HIGH. 6.1 STATUS REGISTER Status Register Format and Status Register Bit Definitions are described in Tables 6.1 & 6.2. Table 6.1 Status Register Format Default Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SRWD QE BP3 BP2 BP1 BP0 WEL WIP 0 0 0 0 0 0 0 0 Table 6.2 Status Register Bit Definition Bit Name Bit 0 WIP Bit 1 WEL Bit 2 BP0 Bit 3 BP1 Bit 4 BP2 Bit 5 BP3 Bit 6 QE Bit 7 SRWD Definition Write In Progress Bit: "0" indicates the device is ready (default) "1" indicates a write cycle is in progress and the device is busy Write Enable Latch: "0" indicates the device is not write enabled (default) "1" indicates the device is write enabled Block Protection Bit: (See Tables 6.4 for details) "0" indicates the specific blocks are not write-protected (default) "1" indicates the specific blocks are write-protected Quad Enable bit: “0” indicates the Quad output function disable (default) “1” indicates the Quad output function enable Status Register Write Disable: (See Table 7.1 for details) "0" indicates the Status Register is not write-protected (default) "1" indicates the Status Register is write-protected Read/Write Type R Volatile R/W 1 Volatile R/W Non-Volatile R/W Non-Volatile R/W Non-Volatile Note: WEL bit can be written by WREN and WRDI commands, but cannot by WRSR command. The BP0, BP1, BP2, BP3, QE, and SRWD are non-volatile and volatile memory cells that can be written by a Write Status Register (WRSR) instruction. The default value of the BP0, BP1, BP2, BP3, QE, and SRWD bits were set to “0” at factory. The function of Status Register bits are described as follows: WIP bit: Write In Progress (WIP) is read-only, and can be used to detect the progress or completion of a Program, Erase, Write/Set Non-Volatile/OTP Register, or Gang Sector/Block Lock/Unlock operation. WIP is set to “1” (busy state) when the device is executing the operation. During this time the device will ignore further instructions except for Read Status/Function Register and Software/Hardware Reset instructions. In addition to the instructions, an Erase/Program Suspend instruction also can be executed during a Program or Erase operation. When an operation has completed, WIP is cleared to “0” (ready state) whether the operation is successful or not and the device is ready for further instructions. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 21 IS25LP512M IS25WP512M WEL bit: Write Enable Latch (WEL) bit indicates the status of the internal write enable latch. When WEL bit is “0”, the internal write enable latch is disabled and the Write operations described in Table 6.3 are inhibited. When WEL bit is “1”, the Write operations are allowed. WEL bit is set by a Write Enable (WREN, 06h) instruction. Most of Write Non-Volatile/Volatile Register, Program and Erase instruction must be preceded by a WREN instruction. WEL bit can be reset by a Write Disable (WRDI) instruction. It will automatically reset after the completion of any Write Non-Volatile Register, Program and Erase operation. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 22 IS25LP512M IS25WP512M Table 6.3 Instructions requiring WREN instruction ahead Instructions must be preceded by the WREN instruction Name Hex Code Operation PP 02h Serial Input Page Program (3-byte or 4-byte Address) 4PP 12h Serial Input Page Program (4-byte Address) PPQ 32h/38h Quad Input Page Program (3-byte or 4-byte Address) 4PPQ 34h/3Eh Quad Input Page Program (4-byte Address) SER D7h/20h Sector Erase 4KB (3-byte or 4-byte Address) 4SER 21h Sector Erase 4KB (4-byte Address) BER32 (32KB) 52h Block Erase 32KB (3-byte or 4-byte Address) 4BER32 (32KB) 5Ch Block Erase 32KB (4-byte Address) BER64 (64KB) D8h Block Erase 64KB (3-byte or 4-byte Address) DCh Block Erase 64KB (4-byte Address) 4BER64 (64KB) CER C7h/60h Chip Erase WRSR 01h Write Status Register WRFR 42h Write Function Register SRPNV 65h Set Read Parameters (Non-Volatile) SRPV(1) 63h Set Read Parameters (Volatile) SERPNV 85h Set Extended Read Parameters (Non-Volatile) SERPV 83h Set Extended Read Parameters (Volatile) IRER 64h Erase Information Row IRP 62h Program Information Row WRBRNV 18h Write Non-Volatile Bank Address Register (1) WRBRV C5h Write Volatile Bank Address Register WRDYB FBh Write DYB Register (4-byte Address) 4WRDYB E1h Write DYB Register (3-byte or 4-byte Address) PGPPB FDh Write PPB (3-byte or 4-byte Address) 4PGPPB E3h Write PPB (4-byte Address) ERPPB E4h Erase PPB PGASP 2Fh Program ASP WRPLB A6h Write PPB Lock Bit SFRZ 91h Set FREEZE bit GBLK 7Eh GANG Sector/Block Lock GBUN 98h GANG Sector/Block Unlock PGPWD E8h Program Password PNVDLR 43h Program Non-Volatile Data Learning Pattern Register WRVDLR 4Ah Program Volatile Data Learning Pattern Register Note: 1. C0h command for SRPV operation and 17h command for WRBRV operation do not require WREN command ahead. BP3, BP2, BP1, BP0 bits: The Block Protection (BP3, BP2, BP1 and BP0) bits are used to define the portion of the memory area to be protected. Refer to Table 6.4 for the Block Write Protection (BP) bit settings. When a defined combination of BP3, BP2, BP1 and BP0 bits are set, the corresponding memory area is protected. Any program or erase operation to that area will be inhibited. Note: A Chip Erase (CER) instruction will be ignored unless all the Block Protection Bits are “0”s. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 23 IS25LP512M IS25WP512M SRWD bit: The Status Register Write Disable (SRWD) bit operates in conjunction with the Write Protection (WP#) signal to provide a Hardware Protection Mode. When the SRWD is set to “0”, the Status Register is not writeprotected. When the SRWD is set to “1” and the WP# is pulled low (V IL), the bits of Status Register (SRWD, QE, BP3, BP2, BP1, BP0) become read-only, and a WRSR instruction will be ignored. If the SRWD is set to “1” and WP# is pulled high (VIH), the Status Register can be changed by a WRSR instruction. QE bit: The Quad Enable (QE) is a non-volatile bit in the Status Register that allows quad operation. When the QE bit is set to “0”, the pin WP# and HOLD#/RESET# are enabled. When the QE bit is set to “1”, the IO2 and IO3 pins are enabled. WARNING: The QE bit must be set to “0” if WP# or HOLD#/RESET# pin (or ball) is tied directly to the power supply. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 24 IS25LP512M IS25WP512M Table 6.4 Block assignment by Block Write Protect (BP) Bits Status Register Bits Block Size = 64KB, Protected Memory Area (1024Blocks) BP3 BP2 BP1 BP0 0 0 0 0 TBS = 0, Top area TBS = 1, Bottom area 0 ( None) 0 ( None) 1023rd) 1 (1 block: 0th) 0 0 0 1 1 (1 block: 0 0 1 0 2 (2 blocks: 1022nd and 1023rd) 2 (2 blocks: 0th and 1st) 0 0 1 1 3 (4 blocks: 1020th to 1023rd) 3 (4 blocks: 0th to 3rd) 0 1 0 0 4 (8 blocks: 1016th to 1023rd) 4 (8 blocks: 0th to 7th) 0 1 0 1 5 (16 blocks: 1008th to 1023rd) 5 (16 blocks: 0th to 15th) 0 1 1 0 6 (32 blocks: 992nd to 1023rd) 6 (32 blocks: 0th to 31st) 960th 7 (64 blocks: 0th to 63rd) 0 1 1 1 7 (64 blocks: 1 0 0 0 8 (128 blocks: 896th to 1023rd) 8 (128 blocks: 0th to 127th) 1 0 0 1 9 (256 blocks: 768th to 1023rd) 9 (256 blocks: 0th to 255th) 1 0 1 0 10 (512 blocks : 512nd to 1023rd) 10 (512 blocks : 0th to 511st) 1 0 1 1 11 (768 blocks : 256th to 1023rd) 11 (768 blocks : 0th to 767th) 1 1 0 0 12 (896 blocks : 128th to 1023rd) 12 (896 blocks : 0th to 895th) 1 1 0 1 13 (960 blocks : 64th to 1023rd) 13 (960 blocks : 0th to 959th) 1 1 1 0 14 (992 blocks : 32nd to 1023rd) 14 (992 blocks : 0th to 991st) 1 1 1 1 15 (1024 blocks : to 1023rd) 0th to 1023rd) 15 (1024 blocks : 0th to 1023rd) Block Size = 256KB(2), Protected Memory Area (256Blocks) Status Register Bits BP3 BP2 BP1 BP0 TBS(T/B selection) = 0, Top area TBS(T/B selection) = 1, Bottom area 0 0 0 0 0 0 0 0( None) 0( None) 1 1(1 block : 255th) 1(1 block : 0th) 0 0 1 0 2(2 blocks : 254th and 255th) 252nd 3(4 blocks : 0th to 3rd) 0 0 1 1 3(4 blocks : 0 1 0 0 4(8 blocks : 248th to 255th) 4(8 blocks : 0th to 7th) 0 1 0 1 5(16 blocks : 240th to 255th) 5(16 blocks : 0th to 15th) 0 1 1 0 6(32 blocks : 224th to 255th) 6(32 blocks : 0th to 31st) 0 1 1 1 7(64 blocks : 192nd to 255th) 7(64 blocks : 0th to 63rd) 1 0 0 0 8(128 blocks : 128th to 255th) 8(128 blocks : 0th to 127th) 1 0 0 1 9(256 blocks : 0th to 255th) All blocks 9(256 blocks : 0th to 255th) All blocks 1 0 1 x 10-11(256 blocks : 0th to 255th) All blocks 10-11(256 blocks : 0th to 255th) All blocks x 0th 12-15(256 blocks : 0th to 255th) All blocks 1 1 x to 2(2 blocks : 0th and 1st) 255th) 12-15(256 blocks : to 255th) All blocks Notes: 1. x is don’t care 2. For Optional 256KB BP Table, see the Ordering Information (Option “K”) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 25 IS25LP512M IS25WP512M 6.2 FUNCTION REGISTER Function Register Format and Bit definition are described in Table 6.5 and Table 6.6. Table 6.5 Function Register Format Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 IRL3 IRL2 IRL1 IRL0 ESUS PSUS TBS 0 0 0 0 0 0 0 Default Bit 0 Dedicated RESET# Disable 0 or 1 Table 6.6 Function Register Bit Definition Bit Name Bit 0 Dedicated RESET# Disable Bit 1 TBS Bit 2 PSUS Bit 3 ESUS Bit 4 IR Lock 0 Bit 5 IR Lock 1 Bit 6 IR Lock 2 Bit 7 IR Lock 3 Definition Dedicated RESET# Disable bit “0” indicates Dedicated RESET# was enabled “1” indicates Dedicated RESET# was disabled Top/Bottom Selection. (See Table 6.4 for details) “0” indicates Top area. “1” indicates Bottom area. Program suspend bit: “0” indicates program is not suspend “1” indicates program is suspend Erase suspend bit: "0" indicates Erase is not suspend "1" indicates Erase is suspend Lock the Information Row 0: “0” indicates the Information Row can be programmed “1” indicates the Information Row cannot be programmed Lock the Information Row 1: “0” indicates the Information Row can be programmed “1” indicates the Information Row cannot be programmed Lock the Information Row 2: “0” indicates the Information Row can be programmed “1” indicates the Information Row cannot be programmed Lock the Information Row 3: “0” indicates the Information Row can be programmed “1” indicates the Information Row cannot be programmed Read /Write R/W for 0 R only for 1 Type OTP R/W OTP R Volatile R Volatile R/W OTP R/W OTP R/W OTP R/W OTP Note: Once OTP bits of Function Register are written to “1”, it cannot be modified to “0” any more. Dedicated RESET# Disable bit: The default status of the bit is dependent on package type. The device with dedicated RESET# (16-pin SOIC and 24-ball BGA) can be programmed to “1” to disable dedicated RESET# function to move RESET# function to Hold#/RESET# pin (or ball). So the device with dedicated RESET# can be used for dedicated RESET# application and HOLD#/RESET# application. TBS bit: BP0~3 area assignment can be changed from Top (default) to Bottom by setting TBS bit to “1”. However, once Bottom is selected, it cannot be changed back to Top since TBS bit is OTP. See Table 6.4 for details. PSUS bit: The Program Suspend Status bit indicates when a Program operation has been suspended. The PSUS changes to “1” after a suspend command is issued during the program operation. Once the suspended Program resumes, the PSUS bit is reset to “0”. ESUS bit: The Erase Suspend Status bit indicates when an Erase operation has been suspended. The ESUS bit is “1” after a suspend command is issued during an Erase operation. Once the suspended Erase resumes, the ESUS bit is reset to “0”. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 26 IS25LP512M IS25WP512M IR Lock bit 0 ~ 3: The default is “0” so that the Information Row can be programmed. If the bit is set to “1”, it cannot be changed back to “0” again since IR Lock bits are OTP. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 27 IS25LP512M IS25WP512M 6.3 READ REGISTER AND EXTENDED REGISTER Read Register format and bit definitions are described below. Read Register and Extended Read Register consist of a pair of rewritable non-volatile register and volatile register, respectively. During power up sequence, volatile register will be loaded with the value of non-volatile value. 6.3.1 READ REGISTER Table 6.7 and Table 6.8 define all bits that control features in SPI/QPI modes. HOLD#/RESET# pin selection (P7) bit is used to select HOLD# pin or RESET# pin in SPI mode when QE=“0” for the device with HOLD#/RESET#. When QE=1 or in QPI mode, P7 bit setting will be ignored since the pin becomes IO3. For 16-pin SOIC or 24-ball TFBGA with dedicated RESET# device, HOLD# will be selected regardless of P7 bit setting when QE=“0” in SPI mode. The Dummy Cycle bits (P6, P5, P4, P3) define how many dummy cycles are used during various READ modes. The wrap selection bits (P2, P1, P0) define burst length with an enable bit. The SET READ PARAMETERS Operations (SRPNV: 65h, SRPV: C0h or 63h) are used to set all the Read Register bits, and can thereby define HOLD#/RESET# pin (or ball) selection, dummy cycles, and burst length with wrap around. SRPNV is used to set the non-volatile register and SRPV is used to set the volatile register. Table 6.7 Read Register Parameter Bit Table Default P7 HOLD#/ RESET# 0 P6 Dummy Cycles 0 P5 Dummy Cycles 0 P4 Dummy Cycles 0 P3 Dummy Cycles 0 P2 Wrap Enable 0 P1 Burst Length 0 P0 Burst Length 0 Table 6.8 Read Register Bit Definition Read/Write Bit Name Definition P0 Burst Length Burst Length R/W P1 Burst Length Burst Length R/W P2 Burst Length Set Enable Burst Length Set Enable Bit: "0" indicates disable (default) "1" indicates enable R/W P3 Dummy Cycles P4 Dummy Cycles P5 Dummy Cycles P6 Dummy Cycles P7 HOLD#/ RESET# Type Non-Volatile and Volatile Non-Volatile and Volatile Non-Volatile and Volatile Non-Volatile and Volatile Non-Volatile and Volatile Non-Volatile and Volatile Non-Volatile and Volatile R/W Number of Dummy Cycles: Bits1 to Bit4 can be toggled to select the number of dummy cycles (1 to 15 cycles) R/W R/W R/W HOLD#/RESET# function selection Bit: "0" indicates the HOLD# function is selected (default) "1" indicates the RESET# function is selected Non-Volatile and Volatile R/W Table 6.9 Burst Length Data P1 P0 8 bytes 0 0 16 bytes 0 1 32 bytes 1 0 64 bytes 1 1 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 28 IS25LP512M IS25WP512M Table 6.10 Wrap Function Wrap around boundary P2 Whole array regardless of P1 and P0 value 0 Burst Length set by P1 and P0 1 Table 6.11 Read Dummy Cycles vs Max Frequency 3.0V Device (IS25LP) P[6:3] Dummy Cycles2,3 1 Fast Read5 Fast Read5 0Bh/0Ch 0Bh/0Ch Fast Read Dual Output 3Bh/3Ch Fast Read Dual IO BBh/BCh Fast Read Quad Output 6Bh/6Ch Fast Read Quad IO EBh/ECh FRDTR 0Dh/0Eh FRDDTR BDh/BEh FRQDTR EDh/EEh SPI QPI SPI SPI SPI SPI, QPI SPI/QPI SPI4 SPI, QPI 133MHz 75MHz 133MHz 84MHz 117MHz 75MHz 66/66MHz 60MHz 66MHz 66MHz 25MHz 66MHz 33MHz 50MHz 25MHz 50/11MHz 29MHz 11MHz 0 Default 1 1 2 2 84MHz 33MHz 84MHz 50MHz 66MHz 33MHz 63/23MHz 40MHz 23MHz 3 3 104MHz 40MHz 104MHz 66MHz 75MHz 40MHz 66/34MHz 52MHz 34MHz 4 4 110MHz 50MHz 110MHz 84MHz 84MHz 50MHz 66/46MHz 60MHz 46MHz 5 5 115MHz 66MHz 117MHz 90MHz 95MHz 66MHz 66/58MHz 66MHz 58MHz 6 6 120MHz 75MHz 125MHz 104MHz 104MHz 75MHz 66/66MHz 66MHz 66MHz 7 7 133MHz 84MHz 133MHz 108MHz 110MHz 84MHz 66/66MHz 66MHz 66MHz 8 8 133MHz 95MHz 133MHz 117MHz 117MHz 95MHz 66/66MHz 66MHz 66MHz 9 9 133MHz 104MHz 133MHz 133MHz 125MHz 104MHz 66/66MHz 66MHz 66MHz 10 10 133MHz 110MHz 133MHz 133MHz 133MHz 110MHz 66/66MHz 66MHz 66MHz 11 11 133MHz 117MHz 133MHz 133MHz 133MHz 117MHz 66/66MHz 66MHz 66MHz 12 12 133MHz 120MHz 133MHz 133MHz 133MHz 120MHz 66/66MHz 66MHz 66MHz 13 13 133MHz 125MHz 133MHz 133MHz 133MHz 125MHz 66/66MHz 66MHz 66MHz 14 14 133MHz 133MHz 133MHz 133MHz 133MHz 133MHz 66/66MHz 66MHz 66MHz 15 15 133MHz 133MHz 133MHz 133MHz 133MHz 133MHz 66/66MHz 66MHz 66MHz Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 29 IS25LP512M IS25WP512M 1.8V Device (IS25WP) P[6:3] Dummy Cycles2,3 Fast Read5 Fast Read5 0Bh/0Ch 0Bh/0Ch 1 Fast Read Dual Output 3Bh/3Ch Fast Read Dual IO BBh/BCh Fast Read Quad Output 6Bh/6Ch Fast Read Quad IO EBh/ECh FRDTR 0Dh/0Eh FRDDTR BDh/BEh FRQDTR EDh/EEh SPI QPI SPI SPI SPI SPI, QPI SPI/QPI SPI4 SPI, QPI 112MHz 75MHz 112MHz 84MHz 112MHz 75MHz 66/66MHz 60MHz 66MHz 66MHz 25MHz 66MHz 33MHz 50MHz 25MHz 50/11MHz 29MHz 11MHz 0 Default 1 1 2 2 84MHz 33MHz 84MHz 50MHz 66MHz 33MHz 63/23MHz 40MHz 23MHz 3 3 104MHz 40MHz 104MHz 66MHz 75MHz 40MHz 66/34MHz 52MHz 34MHz 4 4 110MHz 50MHz 110MHz 84MHz 84MHz 50MHz 66/46MHz 60MHz 46MHz 5 5 112MHz 66MHz 112MHz 90MHz 95MHz 66MHz 66/58MHz 66MHz 58MHz 6 6 112MHz 75MHz 112MHz 104MHz 104MHz 75MHz 66/66MHz 66MHz 66MHz 7 7 112MHz 84MHz 112MHz 108MHz 110MHz 84MHz 66/66MHz 66MHz 66MHz 8 8 112MHz 93MHz 112MHz 112MHz 112MHz 93MHz 66/66MHz 66MHz 66MHz 9 9 112MHz 104MHz 112MHz 112MHz 112MHz 104MHz 66/66MHz 66MHz 66MHz 10 10 112MHz 110MHz 112MHz 112MHz 112MHz 112MHz 66/66MHz 66MHz 66MHz 11 11 112MHz 112MHz 112MHz 112MHz 112MHz 112MHz 66/66MHz 66MHz 66MHz 12 12 112MHz 112MHz 112MHz 112MHz 112MHz 112MHz 66/66MHz 66MHz 66MHz 13 13 112MHz 112MHz 112MHz 112MHz 112MHz 112MHz 66/66MHz 66MHz 66MHz 14 14 112MHz 112MHz 112MHz 112MHz 112MHz 112MHz 66/66MHz 66MHz 66MHz 15 15 112MHz 112MHz 112MHz 112MHz 112MHz 112MHz 66/66MHz 66MHz 66MHz Notes: 1. Default dummy cycles are as follows. Operation Command Dummy Cycles SPI mode QPI mode SPI mode QPI mode Fast Read 0Bh/0Ch 0Bh/0Ch 8 6 Fast Read Dual Output 3Bh/3Ch - 8 - Fast Read Quad Output 6Bh/6Ch - 8 - Fast Read Dual IO BBh/BCh - 4 - Fast Read Quad IO EBh/ECh EBh/ECh 6 6 Fast Read DTR 0Dh/0Eh 0Dh/0Eh 8 6 Fast Read Dual IO DTR BDh/BEh - 4 - Fast Read Quad IO DTR EDh/EEh EDh/EEh 6 6 Comment RDUID, IRRD instructions are also applied. 2. Enough number of dummy cycles must be applied to execute properly the AX read operation. 3. Must satisfy bus I/O contention. For instance, if the number of dummy cycles and AX bits cycles are same, then X must be Hi-Z. 4. QPI mode is not available for FRDDTR command. 5. RDUID, IRRD instructions are also applied. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 30 IS25LP512M IS25WP512M 6.3.2 EXTENDED READ REGISTER Table 6.12 and Table 6.13 define all bits that control features in SPI/QPI modes. The ODS2, ODS1, ODS0 (EB7, EB6, EB5) bits provide a method to set and control driver strength. The three bits (EB3, EB2, EB1) are read-only bits and may be checked to know whether there is an error during an Erase, Program, or Write/Set Register operation. These bits are not affected by SERPNV or SERPV commands. EB0 bit remains reserved for future use. The SET EXTENDED READ PARAMETERS Operations (SERPNV: 85h, SERPV: 83h) are used to set all the Extended Read Register bits, and can thereby define the output driver strength used during READ modes. SRPNV is used to set the non-volatile register and SRPV is used to set the volatile register. Table 6.12 Extended Read Register Bit Table Bit EB7 EB6 EB5 EB4 EB3 EB2 EB1 EB0 Name ODS2 ODS1 ODS0 DLPEN E_ERR P_ERR PROT_E Reserved Default 1 1 1 0 0 0 0 0 Table 6.13 Extended Read Register Bit Definition Bit Name EB0 Reserved EB1 PROT_E EB2 P_ERR EB3 E_ERR EB4 DLPEN EB5 ODS0 EB6 ODS1 EB7 ODS2 Definition Reserved Protection Error Bit: "0" indicates no error "1" indicates protection error in an Erase or a Program operation Program Error Bit: "0" indicates no error "1" indicates a Program operation failure or protection error Erase Error Bit: "0" indicates no error "1" indicates an Erase operation failure or protection error DLP Enable Bit "0" indicates Disable "1" indicates Enable Read/Write R Reserved R Volatile R Volatile R Volatile R/W Non-Volatile and Volatile Non-Volatile and Volatile Non-Volatile and Volatile Non-Volatile and Volatile R/W Output Driver Strength: Output Drive Strength can be selected according to Table 6.14 Type R/W R/W Table 6.14 Driver Strength Table ODS2 ODS1 ODS0 Description 0 0 0 Reserved 0 0 1 12.50% 0 1 0 25% 0 1 1 37.50% 1 0 0 Reserved 1 0 1 75% 1 1 0 100% 1 1 1 50% Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Remark Default 31 IS25LP512M IS25WP512M PROT_E bit: The Protection Error bit indicates whether an Erase or Program operation has attempted to modify a protected array sector or block, or to access a locked Information Row region. When the bit is set to “1” it indicates that there was an error or errors in previous Erase or Program operations. See Table 6.15 for details. P_ERR bit: The Program Error bit indicates whether a Program operation has succeeded or failed, or whether a Program operation has attempted to program a protected array sector/block or a locked Information Row region. When the bit is set to “1” it indicates that there was an error or errors in previous Program or Write/Set Non-Volatile Register operations. See Table 6.15 for details. E_ERR bit: The Erase Error bit indicates whether an Erase operation has succeeded or failed, or whether an Erase operation has attempted to erase a protected array sector/block or a locked Information Row region. When the bit is set to “1” it indicates that there was an error or errors in previous Erase or Write/Set Non-Volatile Register operations. See Table 6.15 for details. Table 6.15 Instructions to set PROT_E, P_ERR, or E_ERR bit Instructions Description PP/4PP/PPQ/4PPQ/PGPPB/ 4PGPPB/PGPWD The commands will set the P_ERR if there is a failure in the operation. Attempting to program within the protected array sector/block or within an erase suspended sector/block will result in a programming error with P_ERR and PROT_E set to “1”. IRP The command will set the P_ERR if there is a failure in the operation. In attempting to program within a locked Information Row region, the operation will fail with P_ERR and PROT_E set to 1. PGASP The command will set the P_ERR if there is a failure in the operation. Attempting to program ASPR [2:1] after the Protection Mode is selected or attempting to program ASPR[2:1] = 00b will result in a programming error with P_ERR and PROT_E set to “1”. UNPWD WRSR/SRPNV/ SERPNV/WRBRNV/PNVDLR WRFR SER/4SER/BER32K/ 4BER32K/BER64K/ 4BER64K/BER256K/4BER25 6K/CER/IRER/ERPPB If the UNPWD command supplied password does not match the hidden internal password, the UNPWD operation fails in the same manner as a programming operation on a protected sector/block and sets the P_ERR and PROT_E to “1”. The update process for the non-volatile register bits involves an erase and a program operation on the non-volatile register bits. If either the erase or program portion of the update fails, the related error bit (P_ERR or E_ERR) will be set to “1”. Only for WRSR command, when Status Register is write-protected by SRWD bit and WP# pin, attempting to write the register will set PROT_E and E_ERR to “1”. The commands will set the P_ERR if there is a failure in the operation. The commands will set the E_ERR if there is a failure in the operation. E_ERR and PROT_E will be set to “1” when the user attempts to erase a protected main memory sector/block or a locked Information Row region. Chip Erase (CER) command will set E_ERR and PROT_E if any blocks are protected by Block Protection bits (BP3~BP0). But Chip Erase (CER) command will not set E_ERR and PROT_E if sectors/blocks are protected by ASP (DYB bits or PPB bits) only. Notes: 1. OTP bits in the Function Register and TBPARM (OTP bit) in the ASP Register may only be programmed to “1”. Writing of the bits back to “0” is ignored and no error is set. 2. Read only bits and partially protected bits by FREEZE bit in registers are never modified by a command so that the corresponding bits in the Write/Set Register command data byte are ignored without setting any error indication. 3. Once the PROT_E, P_ERR, and E_ERR error bits are set to “1”, they remains set to “1” until they are cleared to “0” with a Clear Extended Read Register (CLERP) command. This means that those error bits must be cleared through the CLERP command. Alternatively, Hardware Reset, or Software Reset may be used to clear the bits. 4. Any further command will be executed even though the error bits are set to “1”. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 32 IS25LP512M IS25WP512M 6.4 BANK ADDRESS REGISTER Related Commands: Read Volatile Bank Address Register (RDBR 16h/C8h), Write Volatile Bank Address Register (WRBRV 17h/C5h), Write Non-Volatile Bank Address Register (WRBRNV 18h), Enter 4-byte Address Mode (EN4B B7h), and Exit 4-byte Address Mode (EX4B 29h). Bank Address Register Bit (8 bits) definitions are described in Table 6.17 and Table 6.18. Table 6.16 Bank Address Register Bit Table BA7 BA6 BA5 BA4 BA3 BA2 BA1 BA0 EXTADD Reserved Reserved Reserved Reserved Reserved BA25 BA24 0 0 0 0 0 0 0 0 Read/Write Type R/W Non-Volatile and Volatile Default Table 6.17 Bank Address Register Bit Definition Bit Name Definition BA0 BA24 BA1 BA25 BA2 Reserved Reserved R Reserved BA3 Reserved Reserved R Reserved BA4 Reserved Reserved R Reserved BA5 Reserved Reserved R Reserved BA6 Reserved R Reserved BA7 EXTADD Reserved 3-byte or 4-byte addressing mode selection Bit: "0" indicates 3-byte addressing mode "1" indicates 4-byte addressing mode R/W Non-Volatile and Volatile Enables 128Mb segment selection in 3-byte addressing 512Mb : BA24 and BA25 BA24, BA25: The Bank Address Register supplies additional high order bits of the main flash array byte boundary address for legacy commands based systems, which supply only the low order 24 bits of address. The Bank Addresses are used as the high bits of address (above A23) for legacy 3-byte address commands when EXTADD=0. The Bank Address is not used when EXTADD = 1 and traditional 3-byte address commands are instead required to provide all four bytes of address. EXTADD: Extended Address (EXTADD) controls the address field size for legacy SPI commands. When shipped from factory, it is cleared to “0” for 3-byte addressing mode. When set to “1” for 4-byte addressing mode, the legacy commands will require 4 bytes of address for the address field Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 33 IS25LP512M IS25WP512M 6.5 ADVANCED SECTOR/BLOCK PROTECTION (ASP) RELATED REGISTER 6.5.1 ADVANCED SECTOR/BLOCK PROTECTION REGISTER (ASPR) Related Commands: Read ASP (RDASP 2Bh) and Program ASP (PGASP 2Fh). Advanced Sector/Block Protection (ASP) Register Bit (16 bits) definitions are described in Tables 6.19 and 6.20. Table 6.18 Advanced Sector/Block Protection Register (ASPR) Bit Table 15 TBPARM(1) Default 1 14 to 7 Reserve d 1 6 Reserve d 1 5 Reserve d 1 4 Reserve d 1 3 Reserve d 1 2 1 PWDMLB PSTMLB 1 1 0 Reserve d 1 Table 6.19 Advanced Sector/Block Protection Register (ASPR) Bit Definition Bit Name 0 Reserved 1 PSTMLB 2 PWDMLB 14:3 Reserved 15 TBPARM(1) Note: 1. TBPARM Definition Reserved Persistent Protection Mode Lock Bit “0” = Persistent Protection Mode permanently enabled. “1” = Persistent Protection Mode not permanently enabled. Password Protection Mode Lock Bit “0” = Password Protection Mode permanently enabled. “1” = Password Protection Mode not permanently enabled. Reserved Configures Parameter Sectors location “0” = 4KB physical sectors at top, (high address) “1” = 4KB physical sectors at bottom (Low address) Read/Write R Reserved R/W OTP R/W OTP R Reserved R/W OTP(1) Type bit is Reserved for optional block size of 256KB device The Advanced Sector/Block Protection Register (ASPR) is used to permanently configure the behavior of Advanced Sector/Block Protection (ASP) features and parameter sectors location. PWDMLB (ASPR [2]) and PSTMLB (ASPR[1]) bits: When shipped from the factory, all devices default ASP to the Persistent Protection Mode, with all sectors unprotected, when power is applied. The device programmer or host system must then choose which sector/block protection method to use. Programming either of the Protection Mode Lock Bits locks the part permanently in the selected mode:     ASPR [2:1] = 11 = No ASP mode selected, Persistent Protection Mode is the default. ASPR [2:1] = 10 = Persistent Protection Mode permanently selected. ASPR [2:1] = 01 = Password Protection Mode permanently selected. ASPR [2:1] = 00 = Illegal condition, attempting to program both bits to zero results in a programming failure and the program operation will abort. It will result in a programming error with P_ERR set to 1. As a result, PWDMLB and PSTMLB are mutually exclusive, only one may be programmed to zero. ASPR programming rules:  If the Password Protection Mode is chosen, the password must be programmed prior to setting the corresponding bit.  Once the Protection Mode is selected, the ASPR [2:1] bits are permanently protected from programming and no further change to the ASPR[2:1] is allowed. Attempting to program ASPR [2:1] after selected will result in a programming error with P_ERR set to 1. The programming time of the ASPR is the same as the typical page programming time. The system can determine the status of the ASPR programming operation by reading the WIP bit in the Status Register.  TBPARM bit can be programmed even after ASPR [2:1] bits are programmed while the FREEZE bit in the PPB Lock Register is “0”. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 34 IS25LP512M IS25WP512M TBPARM bit: TBPARM defines the logical location of the parameter block. The parameter block consists of thirtytwo 4KB sectors, which replace two 64KB blocks. When TBPARM is set to a “0” the parameter block is in the top of the memory array address space. When TBPARM is set to a “1” the parameter block is at the Bottom of the array. TBPARM is OTP and set to a “1” when it ships from Factory. If TBPARM is programmed to “0”, an attempt to change it back to “1” will fail and ignore the Program. The desired state of TBPARM must be selected during the initial configuration of the device during system manufacture; before the first program or erase operation on the main flash array. TBPARM must not be programmed after programming or erasing is done in the main flash array. TBS can be programmed independent of TBPARM. Therefore, the user can select to store parameter information from the bottom of the array and protect boot code starting at the top of the array, and vice versa. Or the user can select to store and protect the parameter information starting from the top or bottom together. Note: For optional device with block size of 256KB, there is no parameter blocks, so TBPARM bit is reserved. 6.5.2 PASSWORD REGISTER Related Commands: Read Password (RDPWD E7h), Program Password (PGPWD E8h), and Unlock Password (UNPWD, E9h). Table 6.20 Password Register Bit Definition Bit Name 63:0 PSWD 6.5.3 Definition 64 bit hidden password: The password is no longer readable after the password protection mode is selected by programming ASPR bit 2 to zero. Default Read/Write Type FFFFFFFFFFFFFFFFh R/W OTP PPB LOCK REGISTER Related Commands: Read PPB Lock Bit (RDPLB A7h), Write PPB Lock Bit (WRPLB A6h), and Set FREEZE Bit (SFRZ 91h). Table 6.21 PPB Lock Register Bit Definition Bit Name 0 PPBLK 6:1 Reserved 7 FREEZE Definition PPB Lock bit: Protect PPB Array “0” = PPB array protected until next power cycle or Hardware Reset “1” = PPB array may be programmed or erased. Reserved Lock current state of BP3-0 bits in Status Register, TBS in Function Register and TBPARM in ASPR, and Information Row (IR) regions. “1” = Locked “0” = Un-locked Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Default Read/Write Type Persistent: 1 Password: 0 R/W Volatile R Reserved R/W Volatile Reserved 0 35 IS25LP512M IS25WP512M PPBLK bit: The PPB Lock bit is a volatile bit for protecting all PPB bits. When cleared to 0, it locks all PPBs, when set to 1, it allows the PPBs to be changed. The WRPLB command is used to clear the PPB Lock bit to 0. The PPB Lock bit must be cleared to 0 only after all the PPBs are configured to the desired settings. In Persistent Protection mode, the PPB Lock bit is set to 1 during POR or Hardware Reset. When cleared to 0, no software command sequence can set the PPB Lock bit to 1, only another Hardware Reset or power-up can set the PPB Lock bit. In the Password Protection mode, the PPB Lock bit is cleared to 0 during POR or Hardware Reset. The PPB Lock bit can only be set to 1 by the Unlock Password command. FREEZE bit: FREEZE bit, when set to “1”, locks the current state of BP3-0 in Status Register, TBS in the Function Register, TBPARM in the Advanced Sector/Block Protection Register, and the Information Row. This prevents writing, programming, or erasing these areas. As long as FREEZE remains cleared to logic “0”, BP3-0 in Status Register, TBS in the Function Register, and TBPARM in the Advanced Sector/Block Protection Register are writable and the Information Row is programmable. Once FREEZE has been written to a logic “1” it can only be cleared to a logic “0” by a power-on cycle or a Hardware Reset. Software Reset will not affect the state of FREEZE. The FREEZE is volatile and the default state of FREEZE after power-on is “0”. The FREEZE can be set to “1” by a SFRZ command. 6.5.4 PB REGISTER Related Commands: Read PPB (RDPPB FCh or 4RDPPB E2h)), Program PPB (PGPPB FDh or 4PGPPB E3h), and Erase PPB (ERPPB E4h). Table 6.22 PPB Register Bit Definition Bit 7:0 6.5.5 Name Definition Default Read/Write Type PPB Read or Program per sector/block PPB: 00h = PPB for the sector/block addressed by the RDPPB or PGPPB command is programmed to “0”, protecting that sector/block from program or erase operations. FFh = PPB for the sector/block addressed by the RDPPB or PGPPB command is erased to “1”, not protecting that sector/block from program or erase operations. FFh R/W Non-Volatile DYB REGISTER Related Commands: Read DYB (RDDYB FAh or 4RDDYB E0h) and Write DYB (WRDYB FBh or 4WRDYB E1h). Table 6.23 DYB Register Bit Definition Bit 7:0 Name DYB Definition Read or Write per sector/block DYB: 00h = DYB for the sector/block addressed by the RDDYB or WRDYB command is cleared to “0”, protecting that sector/block from program or erase operations. FFh = DYB for the sector/block addressed by the RDDYB or WRDYB command is set to “1”, not protecting that sector/block from program or erase operations. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Default Read/Write Type FFh R/W Volatile 36 IS25LP512M IS25WP512M 6.5.6 DATA LEARNING PATTERN REGISTER Related Commands: Read DLP (RDDLP 41h), Program Non-Volatile DLP Register (PNVDLR 43h), Write Volatile DLP Register (WRVDLR 4Ah). The Data Learning Pattern (DLP) resides in an 8-bit NON-Volatile Data Learning Register (NVDLR) as well as an 8-bit Volatile Data Learning Register (VDLR). When shipped from the factory, default value is 00h. A copy of the data pattern in NVDLR will also be written to the VDLR. The VDLR can be written to at any time, but on power cycles the data pattern will return back to data pattern in NVDLR. During Data Training phase, DLP will come from VDLR. Table 6.24 Non-Volatile Data Learning Register (NVDLR) Bit 7:0 Name Definition Default Read/Write Type NVDLP Non-Volatile Data Learning Pattern: The value that may be transferred to the host during DDR read command latency (dummy) cycles to provide a training pattern to help the host more accurately center the data capture point in the received data bits. 00h R/W Non-Volatile Default Read/Write Type Takes the value of NVDLR during POR or Reset R/W Volatile Table 6.25 Volatile Data Learning Register (VDLR) Bit 7:0 Name VDLP Definition Volatile Data Learning Pattern: Volatile copy of the NVDLP used to enable and deliver the Data Learning Pattern to the outputs. The VDLP may be changed by the host during system operation. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 37 IS25LP512M IS25WP512M 7. PROTECTION MODE The device supports hardware and software write-protection mechanisms. 7.1 HARDWARE WRITE PROTECTION The Write Protection (WP#) pin provides a hardware write protection method for BP3, BP2, BP1, BP0, SRWD, and QE in the Status Register. Refer to the section 6.1 STATUS REGISTER. Write inhibit voltage (VWI) is specified in the section 9.8 POWER-UP AND POWER-DOWN. All write sequence will be ignored when Vcc drops to VWI. Table 7.1 Hardware Write Protection on Status Register SRWD WP# Status Register 0 Low Writable 1 Low Protected 0 High Writable 1 High Writable Note: Before the execution of any program, erase or Write Status/Function Register instruction, the Write Enable Latch (WEL) bit must be enabled by executing a Write Enable (WREN) instruction. If the WEL bit is not enabled, the program, erase or write register instruction will be ignored. 7.2 SOFTWARE WRITE PROTECTION The device also provides two kinds of software write protection feature. One is Block Protection by Block Protection bits (BP3, BP2, BP1, BP0) and another is Advanced Sector/Block Protection (ASP). When Block Protection is enabled (i.e., any BP3-0 are set to “1”), Advanced Sector/Block Protection (ASP) can still be used to protect sectors/blocks not protected by the Block Protection scheme. In the case that both ASP and Block Protection are used on the same sector/block the logical OR of ASP and Block Protection related to the sector/block is used. Warning: ASP and Block Protection should not be used concurrently. Use one or the other, but not both. 7.2.1 BLOCK PROTECTION BITS The device provides a software write protection feature. The Block Protection bits (BP3, BP2, BP1, BP0) allow part or the whole memory area to be write-protected. For details, see 6.1 Status Register. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 38 IS25LP512M IS25WP512M 7.2.2 ADVANCED SECTOR/BLOCK PROTECTION (ASP) There are two ways to implement software Advanced Sector/Block Protection on this device: Password Protection method or Persistent Protection methods. Through these two protection methods, user can disable or enable the programming or erasing operation to any or all blocks including 32 top 4K sectors or 32 bottom 4K sectors when block size is 64KB. When block size is uniform 256KB, there will be no 32 4KB parameter blocks. The Figure 7.1 shows an overview of these methods Every main flash array block/top sector/bottom sector has a non-volatile (PPB) and a volatile (DYB) protection bit associated with it. When either bit is 0, the sector is protected from program and erase operations. The PPB bits are protected from program and erase when the PPB Lock bit is “0”. The PPB bits are erased so that all main flash array sectors are unprotected when shipped from factory. There are two methods for managing the state of the PPB Lock bit, Persistent Protection and Password Protection. The Persistent Protection Mode sets the PPB Lock bit to “1” during power up or Hardware Reset so that the PPB bits are unprotected. There is a WRPLB command to clear the PPB Lock bit to “0” to protect the PPB bits. There is no command in the Persistent Protection method to set the PPB Lock bit therefore the PPB Lock bit will remain at “0” until the next power up or Hardware Reset. The Persistent Protection method allows boot code the option of changing sector protection by programming or erasing the PPB, then protecting the PPB from further change for the remainder of normal system operation by clearing the PPB Lock bit. This is sometimes called Boot-code controlled sector protection. The Password Protection Mode requires use of a password to control PPB protection. In the Password Protection Mode, the PPB Lock bit is cleared to “0” during power up or Hardware Reset to protect the PPB bits. A 64-bit password may be permanently programmed and hidden for the Password Protection Mode. The UNPWD command can be used to provide a password for comparison with the hidden password. If the password matches the PPB Lock bit is set to “1” to unprotect the PPB. The WRPLB command can be used to clear the PPB Lock bit to “0”. After clearing the PPB Lock bit to “0”, the UNPWD command can be used again to unprotect the PPB. The selection of the PPB Lock bit management method is made by programming OTP bits in the ASP Register so as to permanently select the method used. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 39 IS25LP512M IS25WP512M Figure 7.1 Advanced Sector/Block Protection ASP Register Bits (OTP) Password Protection Mode (ASPR[2]=0 Persistent Protection Mode (ASPR[1]=0 64-bit Password (OTP) PPB Lock Bit (Volatile) 0 = Locked 1 = Unocked DYB Memory Array PPB DYB 0 Sector/Block 0 PPB 0 DYB 1 Sector/Block 1 PPB 1 DYB 2 Sector/Block 2 PPB 2 DYB 3 Sector/Block 3 PPB 3 DYB N-3 Sector/Block N-3 PPB N-3 DYB N-2 Sector/Block N-2 PPB N-2 DYB N-1 Sector/Block N-1 PPB N-1 DYB N Sector/Block N PPB N 1. 0 = Sector/Block Protected 1 = Sector/Block Unprotected (default) 2. DYBs are volatile and defaults to “1” after power-up 1. The bit defaults to “1” (Persistent Protection mode) or “0” (Password Protection mode) upon reset. 2. “0” locks all PPB bits to their current state. 3. Password Protection mode requires a password to set PPB Lock bit to “1” to enable program or erase of PPB bits. 4. Persistent Protection mode only allows PPB Lock bit to be cleared to “0” to prevent program or erase PPB bits. Power off or hardware reset is required to set PPB Lock bit to “1”. 1. 0 = Sector/Block Protected 1 = Sector/Block Unprotected 2. PPB bits are programmed individually, but erased collectively Notes: 1. 512M (64KB Block): N = 1053 = 32 (32xTop 4KB sectors or 32xBottom 4KB sectors) + 1022 (1022x64KB blocks) - 1 2. 512M (256KB Block): N = 255 = 0 + 256 (256x256KB blocks) - 1 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 40 IS25LP512M IS25WP512M Table 7.2 PPB/DYB and Sector/Block mapping when Block Size is 64KB (TBPARM = 1) Memory Density PPB Group DYB Group Block No. (64Kbyte) PPB 0 : DYB 0 : : PPB 15 PPB 16 : : PPB 31 : DYB 15 DYB 16 : : DYB 31 PPB 32 DYB 32 Block 2 : : : Block 0 Block 1 PPB 540 DYB 540 Block 510 PPB 541 DYB 541 Block 511 : : : 512Mb PPB 1052 PPB 1053 DYB 1052 DYB 1053 Block 1022 Block 1023 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Sector 0 : Sector Size (Kbyte) 4 : 000 0000h – 000 0FFFh : : Sector 15 Sector 16 : : Sector 31 Sector 32 : : Sector 47 : 4 4 : : 4 4 : : 4 : 000 F000h – 000 FFFFh 001 0000h – 001 0FFFh : : 001 F000h – 001 FFFFh 002 0000h – 002 0FFFh : : 002 F000h – 002 FFFFh : : : Sector 8160 : : Sector 8175 Sector 8176 : : Sector 8191 4 : : 4 4 : : 4 1FE 0000h – 1FE 0FFFh : : 1FE F000h – 1FE FFFFh 1FF 0000h – 1FF 0FFFh : : 1FF F000h – 1FF FFFFh : : : 4 3FE 0000h – 3FE 0FFFh : : : 4 3FE F000h – 3FE FFFFh 4 3FF 0000h – 3FF 0FFFh : : : 4 3FF F000h – 3FF FFFFh Sector No. Sector 16352 : : Sector 16367 Sector 16368 : : Sector 16383 Address Range : : 41 IS25LP512M IS25WP512M Table 7.3 PPB/DYB and Sector/Block mapping when Block Size is 64KB Memory Density PPB Group DYB Group Block No. (64Kbyte) (TBPARM = 0) Sector 0 : Sector Size (Kbyte) 4 : 000 0000h – 000 0FFFh : : Sector 15 Sector 16 : : Sector 31 Sector 32 : : Sector 47 : 4 4 : : 4 4 : : 4 : 000 F000h – 000 FFFFh 001 0000h – 001 0FFFh : : 001 F000h – 001 FFFFh 002 0000h – 002 0FFFh : : 002 F000h – 002 FFFFh Sector No. Address Range PPB 0 DYB 0 Block 0 PPB 1 DYB 1 Block 1 PPB 2 DYB 2 Block 2 : : : : : : : : : : : : Sector 8176 : : Sector 8191 : 4 : : 4 : 1FF 0000h – 1FF 0FFFh : : 1FF F000h – 1FF FFFFh : : : : 4 3FE 0000h – 3FE 0FFFh : : : : 4 3FE F000h – 3FE FFFFh 4 3FF 0000h – 3FF 0FFFh : : : : 4 3FF F000h – 3FF FFFFh 512Mb PPB 511 DYB 511 Block 511 : : : : : : PPB 1022 DYB 1022 : : : : PPB 1037 DYB 1037 PPB 1038 DYB 1038 : : : : PPB 1053 DYB 1053 Block 1022 Block 1023 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Sector 16352 : : Sector 16367 Sector 16368 : : Sector 16383 42 IS25LP512M IS25WP512M Table 7.4 PPB/DYB and Sector/Block mapping when Block Size is 256KB (TBPARM bit is Reserved) Memory Density PPB Group DYB Group Block No. (256Kbyte) Sector No. Sector 0 : : Sector 15 Sector 16 512Mb PPB 0 DYB 0 Block 0 : : : PPB 127 : PPB 255 DYB 127 : DYB 255 Block 127 : Block 255 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Sector Size (Kbyte) 4 : : 4 4 Address Range 000 0000h – 000 0FFFh : : 000 F000h – 000 FFFFh 001 0000h – 001 0FFFh : : Sector 31 Sector 32 : : Sector 47 Sector 48 : : Sector 63 : : 4 4 : : 4 4 : : : : 001 F000h – 001 FFFFh 002 0000h – 002 0FFFh : : 002 F000h – 002 FFFFh 003 0000h – 003 0FFFh : : 03 F000h – 03 FFFFh : : : Sector 8128 : : Sector 8143 4 : : 4 1FC0000h – 1F C0FFFh : : 1FC F000h – 1FC FFFFh : : : Sector 8176 : : Sector 8191 4 : : 4 1FF 0000h – 1FF 0FFFh : : 1FF F000h – 1FF FFFFh : : : Sector 16320 : : Sector 16335 Sector 16336 : : Sector 16351 Sector 16352 : : 4 : : 4 4 : : 4 4 : : 3FC 0000h – 3FC 0FFFh : : 3FC F000h – 3FC FFFFh 3FD 0000h – 3FD 0FFFh : : 3FD F000h – 3FD FFFFh 3FE 0000h – 3FE 0FFFh : : Sector 16367 Sector 16368 : : Sector 16383 4 4 : : 4 3FE F000h – 3FE FFFFh 3FF 0000h – 3FF 0FFFh : : 3FF F000h – 3FF FFFFh 43 IS25LP512M IS25WP512M Persistent Protection Bits (PPBs) The Persistent Protection Bits (PPBs) are unique for each sector/block and non-volatile (refer to Figure 7.1, Table 7.2, and Table 7.3). It is programmed individually but must be erased as a group, similar to the way individual words may be programmed in the main array but an entire sector/block must be erased at the same time. The PPBs have the same endurances as the Flash memory. Preprogramming and verification prior to erasure are handled by the device, and therefore do not require system monitoring. Programming a PPB bit requires the typical page programming time. Erasing all the PPBs requires typical sector erase time. During PPB bit programming and PPB bit erasing, status is available by reading the Status Register. Reading of a PPB bit requires the initial access time of the device. Notes: 1. Each PPB is individually programmed to “0” and all are erased to “1” in parallel. 2. The PPB Lock bit must be cleared first before changing the status of a PPB. 3. While programming PPB, array data cannot be read from any sectors/blocks. 4. When reading the PPB of the desired sector/block the address should be location zero within the sector/block. The high order address bits not used must be zero. 5. There are no means for individually erasing a specific PPB and no specific sector/block address is required for this operation. 6. The state of the PPB for a given sector/block can be verified by using a PPB Read command. 7. When the parts are first shipped, the PPBs are cleared (erased to “1”). Dynamic Protection Bits (DYBs) Dynamic Protection Bits (DYBs) are volatile and unique for each sector/block and can be individually modified. DYBs only control the protection for unprotected sectors/blocks that have their PPBs cleared (erased to “1”). By issuing the Write DYB command, the DYBs are cleared to “0” or set to “1”, thus placing each sector/block in the protected or unprotected state respectively. This feature allows software to easily protect sectors/blocks against inadvertent changes, yet does not prevent the easy removal of protection when changes are needed. The DYBs can be set or cleared as often as needed as they are volatile bits. Persistent Protection Bit (PPB) Lock Bit The PPB Lock bit is a volatile bit for protecting all PPB bits. When cleared to “0”, it locks all PPBs and when set to “1”, it allows the PPBs to be changed. . If the PPB Lock bit is “0”, the PPB Program or Erase command does not execute and fails without programming or erasing the PPB. In Persistent Protection mode, the PPB Lock bit is set to “1” during power up or Hardware Reset. When cleared to “0”, no software command sequence can set the PPB Lock bit to “1”, only another Hardware Reset or power-up can set the PPB Lock bit. In the Password Protection mode, the PPB Lock bit is cleared to “0” during power up or a Hardware Reset during power up or a Hardware Reset during power up or a Hardware Reset. The PPB Lock bit can only be set to “1” by the Password Unlock command. The PPB Lock bit must be cleared to “0” only after all PPBs are configured to the desired settings. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 44 IS25LP512M IS25WP512M Sector/Block Protection States Summary Each sector in specific blocks and each of all other blocks except for the specific blocks can be in one of the following protection states:  Unlocked – The sector/block is unprotected and protection can be changed by a simple command. The protection state defaults to unprotected after a power cycle, software reset, or hardware reset.  Dynamically Locked – A sector/block is protected and protection can be changed by a simple command. The protection state is not saved across a power cycle.  Persistently Locked – A sector/block is protected and protection can only be changed if the PPB Lock bit is set to “1”. The protection state is non-volatile and saved across a power cycle or reset. Changing the protection state requires programming and or erase of the PPB bits. Table 7.5 contains all possible combinations of the DYB, PPB, and PPB Lock bit relating to the status of the sector/block. In summary, if the PPB Lock bit is locked (cleared to “0”), no changes to the PPBs are allowed. The PPB Lock bit can only be unlocked (set to “1”) through a Hardware Reset or power cycle. Table 7.5 Sector/Block Protection States Protection Bit values DYB 1 1 Unprotected 1 0 Protected 0 1 Protected 0 0 Protected 1 Changeable Changeable 0 NOT changeable Changeable “0” = Locked or Protected “1” = Unlocked or Unprotected PPB Lock Bit Assigned Sector/Block State PPB Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 45 IS25LP512M IS25WP512M Persistent Protection Mode The Persistent Protection Mode sets the PPB Lock bit to “1” during power up or Hardware Reset so that the PPB bits are unprotected by a device Hardware Reset. Software Reset does not affect the PPB Lock bit. The WRPLB command can clear the PPB Lock bit to “0” to protect the PPB. There is no command to set the PPB Lock bit therefore the PPB Lock bit will remain at “0” until the next power up or Hardware Reset. Password Protection Mode The Password Protection Mode allows an even higher level of security than the Persistent Protection Mode by requiring a 64-bit password for unlocking the device PPB Lock bit. In addition to this password requirement, after power up or Hardware Reset, the PPB Lock bit is cleared to “0” to maintain the password mode of operation. Successful execution of the Unlock Password command by entering the entire password sets the PPB Lock bit to “1”, allowing for sector/block PPBs modifications. Notes: 1. The password is all “1”s when shipped from Factory. It is located in its own memory space and is accessible through the use of the Program Password and Read Password commands. 2. Once the Password is programmed and verified, the Password Protection Mode Lock Bit (ASPR[2]=0) in ASP Register must be programmed in order to prevent reading or modifying the password. After the Password Protection Mode Lock Bit is programmed, all further Program and Read commands to the password region are disabled and these commands are ignored so that there is no means to verify what the password is. Password verification is only allowed before selecting the Password Protection Mode. 3. The Program Password Command is only capable of programming “0”s. Programming a “1” after a cell is programmed as a “0” results in the cell left as a “0” with no programming error. 4. All 64-bit password combinations are valid as a password. 5. The Protection Mode Lock Bits in ASP Register are not erasable because they are OTP. 6. The exact password must be entered in order for the unlocking function to occur. If the password provided by Unlock Password command does not match the hidden internal password, the unlock operation fails in the same manner as a programming operation on a protected sector/block. The P_ERR and PROT_E are set to 1 and the PPB Lock bit remains cleared to 0. In this case it is a failure to change the state of the PPB Lock bit because it is still protected by the lack of a valid password. 7. The Unlock Password command cannot be accepted any faster than once every 100μs ± 20μs. This makes it take an unreasonably long time (58 million years) for a hacker to run through all the 64-bit combinations in an attempt to correctly match a password. The Read Status Register command may be used to read the WIP bit to determine when the device has completed the Unlock Password command or is ready to accept a new password command. When a valid password is provided the Unlock Password command does not insert the 100μs delay before returning the WIP bit to zero. 8. If the password is lost after selecting the Password Protection Mode, there is no way to set the PPB Lock bit. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 46 IS25LP512M IS25WP512M 8. DEVICE OPERATION 8.1 COMMAND OVERVIEW The device utilizes an 8-bit instruction register. Refer to Table 8.4. Instruction Set for details on instructions and instruction codes. All instructions, addresses, and data are shifted in with the most significant bit (MSB) first on Serial Data Input (SI) or Serial Data IOs (IO0, IO1, IO2, IO3). The input data on SI or IOs is latched on the rising edge of Serial Clock (SCK) for normal mode and both of rising and falling edges for DTR mode after Chip Enable (CE#) is driven low (VIL). Every instruction sequence starts with a one-byte instruction code and is followed by address bytes and/or dummy cycles (configurable) and/or data bytes, depending on the type of instruction. CE# must be driven high (VIH) after the last bit of the instruction sequence has been shifted in to end the operation. Commands are structured as follows:  Each command begins with a byte (eight bits) instruction.  The instruction may be stand alone or may be followed by address bits to select a location within one of several address spaces in the device. The address may be either a 24-bit or 32-bit byte boundary address.  The SPI interface with Multiple IO provides the option for each transfer of address and data information to be done one, two, or four bits in parallel. This enables a tradeoff between the number of signal connections (IO bus width) and the speed of information transfer. If the host system can support a two or four bit wide IO bus the memory performance can be increased by using the instructions that provide parallel two bit (dual) or parallel four bit (quad) transfers.  The width of all transfers following the instruction are determined by the instruction sent.  All single bit or parallel bit groups are transferred in most to least significant bit order.  Some instructions send Mode Bits following the address to indicate that the next command will be of the same type with an implied, rather than an explicit, instruction. The next command thus does not provide an instruction byte, only a new address and mode bits. This reduces the time needed to send each command when the same command type is repeated in a sequence of commands.  The address or Mode Bits may be followed by Dummy Cycles before read data is returned to the host.  Dummy Cycles may be zero to several SCK cycles. In fact, Mode Bits will be counted as a part of Dummy Cycles.  All instruction, address, Mode, and data information is transferred in byte granularity. Addresses are shifted into the device with the Most Significant Byte first. All data is transferred with the lowest address byte sent first. Following bytes of data are sent in lowest to highest byte address order i.e. the byte address increments.  All attempts to read the flash memory array during a program, erase, or a write cycle (embedded operations) are ignored. The embedded operation will continue to execute without any affect. A very limited set of commands are accepted during an embedded operation. These are discussed in the individual command descriptions. While a program, erase, or write operation is in progress, it is recommended to check that the Write In Progress (WIP) bit is “0” before issuing most commands to the device, to ensure the new command can be accepted.  Depending on the command, the time for execution varies. A command to read status information from an executing command is available to determine when the command completes execution and whether the command was successful.  Following are some general signal relationship descriptions to keep in mind. – The host always controls the Chip Enable (CE#), Serial Clock (SCK), and Serial Input (SI) - SI for single bit wide transfers. The memory drives Serial Output (SO) for single bit read transfers. The host and memory alternately drive the IO0-IO3 signals during Dual and Quad transfers. – All commands begin with the host selecting the memory by driving CE# low before the first rising edge of SCK. CE# is kept low throughout a command and when CE# is returned high the command ends. Generally, CE# remains low for 8-bit transfer multiples to transfer byte granularity information. All commands will not be accepted if CE# is returned high not at an 8-bit boundary. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 47 IS25LP512M IS25WP512M 8.2 COMMAND SET SUMMARY Extended Addressing To accommodate addressing above 128Mb (24-bit) for read, erase, write and program operations, there are three options: 1. New 4-byte (32-bit) address instructions. New 4-byte instructions are valid in both 4-byte addressing mode and 3-byte addressing mode. See Table 8.2. 2. 4-byte addressing mode with legacy 3-byte address instructions. There are 2 ways to enter into 4-byte addressing mode. - The device can be set to 4-byte addressing mode by setting EXTADD bit = “1” in the Bank Address Register (BAR[7]) - If EXTADD bit is set to “0” (3-byte addressing mode), also the device can be switched to 4-byte addressing mode by issuing Enter 4-byte Address Mode Command See Table 8.3. - BA24, BA25 bits are ignored in 4-byte addressing mode 3. 3-byte addressing mode with the 3-byte address instructions: The device can be set to 3-byte addressing mode by setting EXTADD bit = “0” in the Bank Address Register (BAR [7])  BA24, BA25 select individual bank (128Mb) in 3-byte addressing mode.  3-byte address selects an address within the bank (128Mb)  The host system writes the Bank Address Register to access beyond the first 128Mbit of memory.  Bank Address Register bits are volatile. o On power up, the default is Bank0 (the lowest address 16 Mbytes).  For Read, the device will continuously transfer out data until the end of the array. o There is no bank to bank delay. o The Bank Address Register is not updated. o The Bank Address Register value is used only for the initial address of an access. Table 8.1 Bank Address Map 512Mb BA[25:24] Bank 00 0 0000 0000h 00FF FFFFh 01 1 0100 0000h 01FF FFFFh 10 2 0200 0000h 02FF FFFFh 11 3 0300 0000h 03FF FFFFh Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Memory Array Address Range 48 IS25LP512M IS25WP512M Table 8.2 New Instruction Set with 4-byte address Instruction Name Operation Code Address Mode 4NORD 4-byte Address Normal Read Mode 13h 4-byte Address 4FRD 4-byte Address Fast Read Mode 0Ch 4-byte Address 4FRDIO 4-byte Address Fast Read Dual I/O BCh 4-byte Address 4FRDO 4-byte Address Fast Read Dual Output 3Ch 4-byte Address 4FRQIO 4-byte Address Fast Read Quad I/O ECh 4-byte Address 4FRQO 4-byte Address Fast Read Quad Output 6Ch 4-byte Address 4FRDTR 4-byte Address Fast Read DTR Mode 0Eh 4-byte Address 4FRDDTR 4-byte Address Fast Read Dual I/O DTR BEh 4-byte Address 4FRQDTR 4-byte Address Fast Read Quad I/O DTR EEh 4-byte Address 4PP 4-byte Address Serial Input Page Program 12h 4-byte Address 4PPQ 4-byte Address Quad Input Page Program 34h/3Eh 4-byte Address 4SER 4-byte Address Sector Erase 21h 4-byte Address 4BER32 (32KB) 4-byte Address Block Erase 32KB 5Ch 4-byte Address 4BER64/256 (64/256KB) 4-byte Address Block Erase 64KB DCh 4-byte Address 4SECUNLOCK 4-byte Address Sector Unlock 25h 4-byte Address 4RDDYB 4-byte Address Read DYB E0 4-byte Address 4WRDYB 4-byte Address Write DYB E1 4-byte Address 4RDPPB 4-byte Address Read PPB E2 4-byte Address 4PGPPB 4-byte Address Program PPB E3 4-byte Address Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 49 IS25LP512M IS25WP512M Table 8.3 Instruction Set with 3-byte or 4-byte address according to EXTADD Bit setting Address Mode Instruction Name NORD Operation Normal Read Mode Code EXTADD (BAR[7] = 1 EXTADD (BAR[7]) = 0 03h 4-byte Address 3-byte Address FRD Fast Read Mode 0Bh 4-byte Address 3-byte Address FRDIO Fast Read Dual I/O BBh 4-byte Address 3-byte Address FRDO Fast Read Dual Output 3Bh 4-byte Address 3-byte Address FRQIO Fast Read Quad I/O EBh 4-byte Address 3-byte Address FRQO Fast Read Quad Output 6Bh 4-byte Address 3-byte Address FRDTR Fast Read DTR Mode 0Dh 4-byte Address 3-byte Address FRDDTR Fast Read Dual I/O DTR BDh 4-byte Address 3-byte Address FRQDTR Fast Read Quad I/O DTR EDh 4-byte Address 3-byte Address PP Serial Input Page Program 02h 4-byte Address 3-byte Address PPQ Quad Input Page Program 32h/38h 4-byte Address 3-byte Address SER Sector Erase D7h/20h 4-byte Address 3-byte Address BER32 (32KB) Block Erase 32KB 52h 4-byte Address 3-byte Address BER64 (64KB/256KB) Block Erase 64KB/256KB D8h 4-byte Address 3-byte Address SECUNLOCK Sector Unlock 26h 4-byte Address 3-byte Address RDDYB Read DYB FA 4-byte Address 3-byte Address WRDYB Write DYB FB 4-byte Address 3-byte Address RDPPB Read PPB FC 4-byte Address 3-byte Address PGPPB Program PPB FD 4-byte Address 3-byte Address Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 50 IS25LP512M IS25WP512M Table 8.4 All Instruction Set Instruction Name Operation Mode Byte0 Byte1 Byte2 Byte3 Byte4 NORD Normal Read Mode (3-byte Address) SPI 03h A A A Data out NORD Normal Read Mode (4-byte Address) SPI 03h A A A A Data out 4NORD 4-byte Address Normal Read Mode SPI 13h A A A A Data out FRD Fast Read Mode (3-byte Address) SPI QPI 0Bh A A A Dummy(1) Byte Data out FRD Fast Read Mode (4-byte Address) SPI QPI 0Bh A A A A Dummy(1) Byte Data out 4FRD 4-byte Address Fast Read Mode SPI QPI 0Ch A A A A Dummy(1) Byte Data out FRDIO Fast Read Dual I/O (3-byte Address) SPI BBh A Dual A Dual A Dual AXh(1),(2) Dual Dual Data out FRDIO Fast Read Dual I/O (4-byte Address) SPI BBh A A Dual A Dual A Dual AXh(1),(2) Dual Dual Data out 4FRDIO 4-byte Address Fast Read Dual I/O SPI BCh A A Dual A Dual A Dual AXh(1),(2) Dual Dual Data out FRDO Fast Read Dual Output (3-byte Address) SPI 3Bh A A A Dummy(1) Byte Dual Data out FRDO Fast Read Dual Output (4-byte Address) SPI 3Bh A A A A Dummy(1) Byte Dual Data out 4FRDO 4-byte Address Fast Read Dual Output SPI 3Ch A A A A Dummy(1) Byte Dual Data out FRQIO Fast Read Quad I/O (3-byte Address) SPI QPI EBh A Quad A Quad A Quad AXh(1), (2) Quad Quad Data out FRQIO Fast Read Quad I/O (4-byte Address) SPI QPI EBh A Quad A Quad A Quad A Quad AXh(1), (2) Quad Quad Data out 4FRQIO 4-byte Address Fast Read Quad I/O SPI QPI ECh A Quad A Quad A Quad A Quad AXh(1), (2) Quad Quad Data out FRQO Fast Read Quad Output (3-byte Address) SPI 6Bh A A A Dummy(1) Byte Quad Data out FRQO Fast Read Quad Output (4-byte Address) SPI 6Bh A A A A Dummy(1) Byte Quad Data out 4FRQO 4-byte Address Fast Read Quad Output SPI 6Ch A A A A Dummy(1) Byte Quad Data out Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Byte5 Byte6 51 IS25LP512M IS25WP512M Instruction Name Operation Mode Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 FRDTR Fast Read DTR Mode (3-byte Address) SPI QPI 0Dh A A A Dummy(1) Byte Dual Data out FRDTR Fast Read DTR Mode (4-byte Address) SPI QPI 0Dh A A A A Dummy(1) Byte Dual Data out 4FRDTR 4-byte Address Fast Read DTR Mode SPI QPI 0Eh A A A A Dummy(1) Byte Dual Data out FRDDTR Fast Read Dual I/O DTR (3-byte Address) SPI BDh A Dual A Dual A Dual AXh(1), (2) Dual Dual Data out FRDDTR Fast Read Dual I/O DTR (4-byte Address) SPI BDh A A Dual A Dual A Dual AXh(1), (2) Dual Dual Data out 4FRDDTR 4-byte Address Fast Read Dual I/O DTR SPI BEh A A Dual A Dual A Dual AXh(1), (2) Dual Dual Data out FRQDTR Fast Read Quad I/O DTR (3-byte Address) SPI QPI EDh A A A AXh(1), (2) Quad Quad Data out FRQDTR Fast Read Quad I/O DTR (4-byte Address) SPI QPI EDh A A A A AXh(1), (2) Quad Quad Data out 4FRQDTR 4-byte Address Fast Read Quad I/O DTR SPI QPI EEh A A A A AXh(1), (2) Quad Quad Data out PP Input Page Program (3-byte Address) SPI QPI 02h A A A PD (256byte) PP Input Page Program (4-byte Address) SPI QPI 02h A A A A PD (256byte) 4PP 4-byte Address Input Page Program SPI QPI 12h A A A A PD (256byte) PPQ Quad Input Page Program (3-byte Address) SPI 32h/38h A A A Quad PD (256byte) PPQ Quad Input Page Program (4-byte Address) SPI 32h/38h A A A A Quad PD (256byte) 4PPQ 4-byte Address Quad Input Page Program SPI 34h/3Eh A A A A Quad PD (256byte) SER Sector Erase (3-byte Address) SPI QPI D7h/20h A A A SER Sector Erase (4-byte Address) SPI QPI D7h/20h A A A A 4SER 4-byte Address Sector Erase SPI QPI 21h A A A A Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Byte6 52 IS25LP512M IS25WP512M Instruction Name Operation Mode Byte0 Byte1 Byte2 Byte3 BER32 (32KB) Block Erase 32Kbyte (3-byte Address) SPI QPI 52h A A A BER32 (32KB) Block Erase 32Kbyte (4-byte Address) SPI QPI 52h A A A A 4BER32 (32KB) 4-byte Address Block Erase 32Kbyte SPI QPI 5Ch A A A A BER64 (64KB) Block Erase 64Kbyte (3-byte Address) SPI QPI D8h A A A BER64 (64KB) Block Erase 64Kbyte (4-byte Address) SPI QPI D8h A A A A 4BER64 (64KB) 4-byte Address Block Erase 64Kbyte SPI QPI DCh A A A A CER Chip Erase SPI QPI C7h/60h WREN Write Enable SPI QPI 06h WRDI Write Disable SPI QPI 04h RDSR Read Status Register SPI QPI 05h Data out WRSR Write Status Register SPI QPI 01h Data in RDFR Read Function Register SPI QPI 48h Data out WRFR Write Function Register SPI QPI 42h Data in QPIEN Enter QPI mode SPI 35h QPIDI Exit QPI mode QPI F5h PERSUS Suspend during program/erase SPI QPI 75h/B0h PERRSM Resume program/erase SPI QPI 7Ah/30h DP Deep Power Down SPI QPI B9h RDID, RDPD Read ID / Release Power Down SPI QPI ABh XXh(3) XXh(3) XXh(3) ID7-ID0 SRPNV Set Read Parameters (Non-Volatile) SPI QPI 65h Data in SRPV Set Read Parameters (Volatile) SPI QPI C0h/63h Data in SERPNV Set Extended Read Parameters (Non-Volatile) SPI QPI 85h Data in Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Byte4 Byte5 Byte6 53 IS25LP512M IS25WP512M Instruction Name Operation Mode Byte0 Byte1 SERPV Set Extended Read Parameters (Volatile) SPI QPI 83h Data in RDRP Read Read Parameters (Volatile) SPI QPI 61h Data out RDERP Read Extended Read Parameters (Volatile) SPI QPI 81h Data out CLERP Clear Extended Read Register SPI QPI 82h RDJDID Read JEDEC ID Command SPI QPI 9Fh RDMDID Read Manufacturer & Device ID SPI QPI 90h RDJDIDQ Read JEDEC ID QPI mode QPI AFh MF7-MF0 ID15-ID8 ID7-ID0 RDUID Read Unique ID SPI QPI 4Bh A(4) A(4) RDSFDP SFDP Read SPI 5Ah A NOP No Operation SPI QPI 00h RSTEN Software Reset Enable SPI QPI 66h RST Software Reset SPI QPI 99h IRER Erase Information Row SPI QPI 64h IRP Program Information Row SPI QPI IRRD Read Information Row SECUNLOCK Byte4 Byte5 00h MF7-MF0 ID7-ID0 01h ID7-ID0 MF7-MF0 A(4) Dummy Byte Data out A A Dummy Byte Data out A A A 62h A A A PD (256byte) SPI QPI 68h A A A Dummy Byte Sector Unlock (3-byte Address) SPI QPI 26h A A A SECUNLOCK Sector Unlock (4-byte Address) SPI QPI 26h A A A A 4SECUNLOCK 4-byte Address Sector Unlock SPI QPI 25h A A A A SECLOCK Sector Lock SPI QPI 24h Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Byte2 Byte3 MF7-MF0 ID15-ID8 ID7-ID0 XXh(3) XXh(3) Byte6 Data out 54 IS25LP512M IS25WP512M Instruction Name Operation Mode Byte0 Byte1 RDBR Read Bank Address Register (Volatile) SPI QPI 16h/C8h Data out WRBRV Write Bank Address Register (Volatile) SPI QPI 17h/C5h Data in WRBRNV Write Bank Address Register (Non-Volatile) SPI QPI 18h Data in EN4B Enter 4-byte Address Mode SPI QPI B7h EX4B Exit 4-byte Address Mode SPI QPI 29h RDDYB Read DYB (3-byte Address) SPI FAh RDDYB Read DYB (4-byte Address) SPI 4RDDYB 4-byte Address Read DYB WRDYB Byte2 Byte3 Byte4 A A A Data out FAh A A A A Data out SPI E0h A A A A Data out Write DYB (3-byte Address) SPI QPI FBh A A A Data in WRDYB Write DYB (4-byte Address) SPI QPI FBh A A A A Data in 4WRDYB 4-byte Address Write DYB SPI QPI E1h A A A A Data in RDPPB Read PPB (3-byte Address) SPI FCh A A A Data out RDPPB Read PPB (4-byte Address) SPI FCh A A A A Data out 4RDPPB 4-byte Address Read PPB SPI E2h A A A A Data out PGPPB Program PPB (Individually) (3-byte Address) SPI QPI FDh A A A PGPPB Program PPB (Individually) (4-byte Address) SPI QPI FDh A A A A 4PGPPB 4-byte Address Program PPB (Individually) SPI QPI E3h A A A A ERPPB Erase PPB (as a group) SPI QPI E4h RDASP Read ASP SPI 2Bh Data out (2 byte) PGASP Program ASP SPI QPI 2Fh PD (2 byte) RDPLB Read PPB Lock Bit SPI A7h Data out WRPLB Write PPB Lock Bit SPI QPI A6h SFRZ Set FREEZE bit SPI QPI 91h Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Byte5 Byte6 55 IS25LP512M IS25WP512M Instruction Name Operation Mode Byte0 Byte1 RDPWD Read Password SPI E7h Data out (8 byte) PGPWD Program Password SPI QPI E8h PD (8 byte) UNPWD Unlock Password SPI QPI E9h Data in (8 byte) GBLK Set all DYB bits (Gang Sector/ Block Lock) SPI QPI 7Eh GBUN Clear all DYB bits (Gang Sector/ Block Unlock) SPI QPI 98h RDDLP Read Data Learning Pattern SPI QPI 41h Data out PNVDLR Program DLP Register (NonVolatile) SPI QPI 43h Data in WRVDLR Write DLP Register (Volatile) SPI QPI 4Ah Data in Byte2 Byte3 Byte4 Byte5 Byte6 Notes: 1. The number of dummy cycles depends on the value setting in the Table 6.11 Read Dummy Cycles. 2. AXh has to be counted as a part of dummy cycles. X means “don’t care”. 3. XX means “don’t care”. 4. A are “don’t care” and A are always “0”. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 56 IS25LP512M IS25WP512M 8.3 NORMAL READ OPERATION (NORD, 03h or 4NORD, 13h) The Normal Read (NORD) instruction is used to read memory contents at a maximum frequency of 80MHz.  03h (EXTADD=0) is followed by a 3-byte address (A23-A0) or  03h (EXTADD=1) is followed by a 4-byte address (A31-A0) or  13h is followed by a 4-byte address (A31-A0) The Normal Read instruction code is transmitted via the SI line, followed by three (A23 - A0) or four (A31 – A0) address bytes of the first memory location to be read as above. A total of 24 or 32 address bits are shifted in, but only AVMSB (Valid Most Significant Bit) - A0 are decoded. The remaining bits (A31 – AVMSB+1) are ignored. The first byte addressed can be at any memory location. Upon completion, any data on the SI will be ignored. Refer to Table 8.5 for the related Address Key. The first byte data (D7 - D0) is shifted out on the SO line, MSB first. A single byte of data, or up to the whole memory array, can be read out in one Normal Read instruction. The address is automatically incremented by one after each byte of data is shifted out. The read operation can be terminated at any time by driving CE# high (VIH) after the data comes out. When the highest address of the device is reached, the address counter will roll over to the 000000h address, allowing the entire memory to be read in one continuous Read instruction. If the Normal Read instruction is issued while an Erase, Program or Write operation is in process (WIP=1) the instruction is ignored and will not have any effects on the current operation . Table 8.5 Address Key Mode 3 byte address 4 byte address Valid Address AVMSB(2)–A0 512Mb A23-A0 A25-A0 (A31-A26=X)(2) Notes: 1. X=Don’t Care 2. AVMSB is a Valid MSB. In 4 byte address for 512Mb, A31 is an MSB, and A25 is a Valid MSB. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 57 IS25LP512M IS25WP512M Figure 8.1 Normal Read Sequence (03h [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 ... 28 29 30 31 0 SCK Mode 0 3-byte Address SI Instruction = 03h 23 22 ... 21 3 2 1 45 46 47 High Impedance SO CE # 32 33 34 35 36 37 39 38 40 41 42 43 44 ... SCK SI Data Out 1 SO tV 7 6 5 4 3 Data Out 2 2 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 1 0 7 6 5 4 3 2 0 1 58 ... IS25LP512M IS25WP512M Figure 8.2 Normal Read Sequence (03h [EXTADD=1] or 13h, 4-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 36 ... 37 38 39 0 SCK Mode 0 4-byte Address SI Instruction = 03h/13h 31 30 ... 29 3 2 1 53 54 55 High Impedance SO CE # 40 41 42 43 44 45 47 46 48 49 50 51 52 ... SCK SI Data Out 1 SO tV 7 6 5 4 3 Data Out 2 2 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 1 0 7 6 5 4 3 2 0 1 59 ... IS25LP512M IS25WP512M 8.4 FAST READ OPERATION (FRD, 0Bh or 4FRD, 0Ch) The Fast Read (FRD, 4FRD) instruction is used to read memory data at up to a 133MHz clock.  0Bh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  0Bh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  0Ch is followed by a 4-byte address (A31-A0) The Fast Read instruction code is followed by three or four address bytes as above and dummy cycles (configurable, default is 8 clocks), transmitted via the SI line, with each bit latched-in during the rising edge of SCK. Then the first data byte from the address is shifted out on the SO line, with each bit shifted out at a maximum frequency fCT, during the falling edge of SCK. The first byte addressed can be at any memory location. The address is automatically incremented by one after each byte of data is shifted out. When the highest address is reached, the address counter will roll over to the 000000h address, allowing the entire memory to be read with a single Fast Read instruction. The Fast Read instruction is terminated by driving CE# high (VIH). If the Fast Read instruction is issued while an Erase, Program or Write cycle is in process (WIP=1) the instruction is ignored without affecting the current cycle. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 60 IS25LP512M IS25WP512M Figure 8.3 Fast Read Sequence (0Bh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 6 8 7 9 10 ... 28 29 30 31 SCK Mode 0 3-byte Address SI Instruction = 0Bh 23 22 21 ... 3 2 1 0 41 42 43 44 45 46 47 ... High Impedance SO CE # 32 33 34 35 36 37 38 39 40 SCK SI Dummy Cycles Data Out tV SO 7 6 5 4 3 2 0 1 ... Note: Dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 61 IS25LP512M IS25WP512M Figure 8.4 Fast Read Sequence (0Bh [EXTADD=1] or 0Ch, 4-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 ... 36 37 38 39 SCK Mode 0 4-byte Address SI Instruction = 0Bh/0Ch 31 30 49 50 29 ... 3 2 1 0 52 53 54 55 ... High Impedance SO CE # 40 41 42 43 44 45 46 47 48 51 SCK SI Dummy Cycles Data Out tV SO 7 6 5 4 3 2 0 1 ... Note: Dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 62 IS25LP512M IS25WP512M FAST READ OPERATION IN QPI MODE (FRD, 0Bh or 4FRD, 0Ch) The Fast Read (FRD) instruction in QPI mode is used to read memory data at up to a 133MHz clock.  0Bh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  0Bh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  0Ch is followed by a 4-byte address (A31-A0) The Fast Read instruction code (2 clocks) is followed by three (6 clocks) or four (8 clocks) address bytes as above and 6 dummy cycles (configurable, default is 6 clocks), transmitted via the IO3, IO2, IO1 and IO0 lines, with each bit latched-in during the rising edge of SCK. Then the first data byte addressed is shifted out on the IO3, IO2, IO1 and IO0 lines, with each bit shifted out at a maximum frequency fCT, during the falling edge of SCK. The first byte addressed can be at any memory location. The address is automatically incremented by one after each byte of data is shifted out. When the highest address is reached, the address counter will roll over to the 000000h address, allowing the entire memory to be read with a single Fast Read QPI instruction. The Fast Read QPI instruction is terminated by driving CE# high (VIH). If the Fast Read instruction in QPI mode is issued while an Erase, Program or Write cycle is in process (WIP=1) the instruction is ignored without affecting the current cycle. The Fast Read sequence in QPI mode is also applied to the commands in the following table 8.6. However, only 3-byte address mode QPI sequence is applied for RDUID, and IRRD commands. Table 8.6 Instructions that Fast Read sequence in QPI Mode is applied to Instruction Name Operation Hex Code FRQIO Fast Read Quad I/O EBh RDUID Read Unique ID 4Bh Read Information Row 68h IRRD Figure 8.5 Fast Read Sequence In QPI Mode (0Bh [EXTADD=0], 3-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 ... 13 14 15 16 17 ... SCK Mode 0 tV IO[3:0] 0Bh Instruction 23:20 19:16 15:12 11:8 3-byte Address 7:4 3:0 7:4 6 Dummy Cycles 3:0 Data 1 7:4 3:0 ... Data 2 Note: Number of dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 63 IS25LP512M IS25WP512M Figure 8.6 Fast Read Sequence In QPI Mode (0Bh [EXTADD=1] or 0Ch, 4-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 ... 15 16 17 ... SCK Mode 0 tV IO[3:0] 0Bh/0Ch Instruction 31:28 27:24 23:20 19:16 15:12 11:8 7:4 4-byte Address 3:0 7:4 6 Dummy Cycles 3:0 ... Data 1 Note: Number of dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. 8.5 HOLD OPERATION HOLD# is used in conjunction with CE# to select the device. When the device is selected and a serial sequence is underway, HOLD# can be used to pause the serial communication with the master device without resetting the serial sequence. To pause, HOLD# is brought low while the SCK signal is low. To resume serial communication, HOLD# is brought high while the SCK signal is low (SCK may still toggle during HOLD). Inputs to SI will be ignored while SO is in the high impedance state, during HOLD. Note: HOLD is not supported in DTR mode or with QE=1 or when RESET# is selected for the HOLD# or RESET# pin. Timing graph can be referenced in AC Parameters Figure 9.4. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 64 IS25LP512M IS25WP512M 8.6 FAST READ DUAL I/O OPERATION (FRDIO, BBh or 4FRDIO, BCh) The Fast Read Dual I/O (FRDIO, 4FRDIO) instruction allows the address bits to be input two bits at a time. This may allow for code to be executed directly from the SPI in some applications.  BBh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  BBh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  BCh is followed by a 4-byte address (A31-A0) The FRDIO/4FRDIO instruction code is followed by three or four address bytes as above and dummy cycles (configurable, default is 4 clocks), transmitted via the IO1 and IO0 lines, with each pair of bits latched-in during the rising edge of SCK. The address MSB is input on IO1, the next bit on IO0, and this shift pattern continues to alternate between the two lines. Depending on the usage of AX read operation mode, a mode byte may be located after address input. The first data byte addressed is shifted out on the IO1 and IO0 lines, with each pair of bits shifted out at a maximum frequency fCT, during the falling edge of SCK. The first bit (MSB) is output on IO1, while simultaneously the second bit is output on IO0. Figures 8.7 and 8.8 illustrates the timing sequence. The first byte addressed can be at any memory location. The address is automatically incremented by one after each byte of data is shifted out. When the highest address is reached, the address counter will roll over to the 000000h address, allowing the entire memory to be read with a single FRDIO/4FRDIO instruction. The FRDIO/4FRDIO instruction is terminated by driving CE# high (VIH). The device supports the AX read operation by applying mode bits during dummy period. Mode bits consist of 8 bits, such as M7 to M0. Four cycles after address input are reserved for Mode bits in FRDIO/4FRDIO execution. M7 to M4 are important for enabling this mode. M3 to M0 become don’t care for future use. When M[7:4]=1010(Ah), it enables the AX read operation and subsequent FRDIO/4FRDIO execution skips command code. It saves cycles as described in Figures 8.9 and 8.10. When the code is different from AXh (where X is don’t care), the device exits the AX read operation. After finishing the read operation, device becomes ready to receive a new command. SPI or QPI mode configuration retains the prior setting. Mode bit must be applied during dummy cycles. Number of dummy cycles in Table 6.11 includes number of mode bit cycles. If dummy cycles are configured as 4 cycles, data output will start right after mode bit is applied. If the FRDIO/4FRDIO instruction is issued while an Erase, Program or Write cycle is in process (WIP=1) the instruction is ignored and will not affect the current cycle. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 65 IS25LP512M IS25WP512M Figure 8.7 Fast Read Dual I/O Sequence (BBh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 ... 18 19 20 21 SCK Mode 0 4 Dummy Cycles 3-byte Address IO0 Instruction = BBh 22 20 18 ... 2 0 6 4 23 21 19 ... 3 1 7 5 High Impedance IO1 Mode Bits CE # 22 23 24 25 26 27 29 28 30 31 32 33 34 35 36 37 ... SCK tV IO0 2 0 6 4 2 0 6 Data Out 1 IO1 3 1 7 5 3 4 2 0 6 Data Out 2 1 7 5 3 4 2 0 6 4 ... 1 7 5 ... Data Out 3 1 7 5 3 Mode Bits Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 66 IS25LP512M IS25WP512M Figure 8.8 Fast Read Dual I/O Sequence (BBh [EXTADD=1] or BCh, 4-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 22 ... 23 24 25 SCK Mode 0 4 Dummy Cycles 4-byte Address IO0 Instruction = BBh/BCh 30 28 26 ... 2 0 6 4 31 29 27 ... 3 1 7 5 High Impedance IO1 Mode Bits CE # 26 27 28 29 30 31 33 32 34 35 36 37 38 39 36 41 ... SCK tV IO0 2 0 6 4 2 0 6 Data Out 1 IO1 3 1 7 5 3 4 2 0 6 Data Out 2 1 7 5 3 4 2 0 6 4 ... 1 7 5 ... Data Out 3 1 7 5 3 Mode Bits Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 67 IS25LP512M IS25WP512M Figure 8.9 Fast Read Dual I/O AX Read Sequence (BBh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 ... 11 12 13 14 15 16 17 18 19 20 ... 21 SCK Mode 0 4 Dummy Cycles 3-byte Address tV Data Out 2 Data Out 1 IO0 22 20 18 ... 2 0 6 4 2 0 6 4 2 0 6 4 ... IO1 23 21 19 ... 3 1 7 5 3 1 7 5 3 1 7 5 ... Mode Bits Notes: 1. If the mode bits=AXh (where X is don’t care), it will keep executing the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Figure 8.10 Fast Read Dual I/O AX Read Sequence (BBh [EXTADD=1] or BCh, 4-byte address) CE # Mode 3 0 1 2 3 ... 15 16 17 18 19 20 21 22 23 24 ... 25 SCK Mode 0 4 Dummy Cycles 4-byte Address tV Data Out 2 Data Out 1 IO0 30 28 26 ... 2 0 6 4 2 0 6 4 2 0 6 4 ... IO1 31 29 27 ... 3 1 7 5 3 1 7 5 3 1 7 5 ... Mode Bits Notes: 1. If the mode bits=AXh (where X is don’t care), it will keep executing the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 68 IS25LP512M IS25WP512M 8.7 FAST READ DUAL OUTPUT OPERATION (FRDO, 3Bh or 4FRDO, 3Ch) The FRDO/4FRDO instruction is used to read memory data on two output pins each at up to a 133MHz clock.  3Bh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  3Bh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  3Ch is followed by a 4-byte address (A31-A0) The FRDO/4FRDO instruction code is followed by three or four address bytes as above and dummy cycles (configurable, default is 8 clocks), transmitted via the IO0 line, with each bit latched-in during the rising edge of SCK. Then the first data byte addressed is shifted out on the IO1 and IO0 lines, with each pair of bits shifted out at a maximum frequency fCT, during the falling edge of SCK. The first bit (MSB) is output on IO1. Simultaneously, the second bit is output on IO0. The first byte addressed can be at any memory location. The address is automatically incremented by one after each byte of data is shifted out. W hen the highest address is reached, the address counter will roll over to the 000000h address, allowing the entire memory to be read with a single FRDO/4FRDO instruction. The instruction FRDO/4FRDO is terminated by driving CE# high (VIH). If the FRDO/4FRDO instruction is issued while an Erase, Program or Write cycle is in process (WIP=1) the instruction is ignored and will not have any effects on the current cycle. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 69 IS25LP512M IS25WP512M Figure 8.11 Fast Read Dual Output Sequence (3Bh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 ... 28 29 30 31 SCK Mode 0 3-byte Address IO0 Instruction = 3Bh 23 22 41 42 21 ... 3 2 1 0 44 45 46 47 ... High Impedance IO1 CE # 32 33 34 35 36 37 38 39 40 43 SCK tV IO0 6 2 0 6 Data Out 1 8 Dummy Cycles IO1 4 7 5 3 4 2 0 ... 1 ... Data Out 2 1 7 5 3 Note: Dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 70 IS25LP512M IS25WP512M Figure 8.12 Fast Read Dual Output Sequence (3Bh [EXTADD=1] or 3Ch, 4-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 ... 36 37 38 39 SCK Mode 0 4-byte Address IO0 Instruction = 3Bh/3Ch 31 30 29 49 50 51 ... 3 2 1 0 52 53 54 55 ... High Impedance IO1 CE # 40 41 42 43 44 45 46 47 48 SCK tV IO0 6 2 0 6 Data Out 1 8 Dummy Cycles IO1 4 7 5 3 4 2 0 ... 1 ... Data Out 2 1 7 5 3 Note: Dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 71 IS25LP512M IS25WP512M 8.8 FAST READ QUAD OUTPUT OPERATION (FRQO, 6Bh or 4FRQO 6Ch) The FRQO/4FRQO instruction is used to read memory data on four output pins each at up to a 133 MHz clock. A Quad Enable (QE) bit of Status Register must be set to "1" before sending the Fast Read Quad Output instruction.  6Bh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  6Bh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  6Ch is followed by a 4-byte address (A31-A0) The FRQO/4FRQO instruction code is followed by three or four address bytes as above and dummy cycles (configurable, default is 8 clocks), transmitted via the IO0 line, with each bit latched-in during the rising edge of SCK. Then the first data byte addressed is shifted out on the IO3, IO2, IO1 and IO0 lines, with each group of four bits shifted out at a maximum frequency f CT, during the falling edge of SCK. The first bit (MSB) is output on IO3, while simultaneously the second bit is output on IO2, the third bit is output on IO1, etc. The first byte addressed can be at any memory location. The address is automatically incremented after each byte of data is shifted out. When the highest address is reached, the address counter will roll over to the 000000h address, allowing the entire memory to be read with a single FRQO/ 4FRQO instruction. FRQO/4FRQO instruction is terminated by driving CE# high (VIH). If a FRQO/4FRQO instruction is issued while an Erase, Program or Write cycle is in process (WIP=1) the instruction is ignored and will not have any effects on the current cycle. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 72 IS25LP512M IS25WP512M Figure 8.13 Fast Read Quad Output Sequence (6Bh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 ... 28 29 30 31 SCK Mode 0 3-byte Address IO0 Instruction = 6Bh 23 22 41 42 21 ... 3 2 1 0 44 45 46 47 ... High Impedance IO1 High Impedance IO2 High Impedance IO3 CE # 32 33 34 35 36 37 38 39 40 43 SCK tV IO0 4 8 Dummy Cycles 0 4 0 4 0 4 0 ... Data Out 1 Data Out 2 Data Out 3 Data Out 4 IO1 5 1 5 1 5 1 5 1 ... IO2 6 2 6 2 6 2 6 2 ... IO3 7 3 7 3 7 3 7 3 ... Note: Dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 73 IS25LP512M IS25WP512M Figure 8.14 Fast Read Quad Output Sequence (6Bh [EXTADD=1] or 6Ch, 4-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 ... 36 37 38 39 SCK Mode 0 4-byte Address IO0 Instruction = 6Bh/6Ch 31 30 29 ... 3 2 1 0 52 53 54 55 ... High Impedance IO1 High Impedance IO2 High Impedance IO3 CE # 40 41 42 43 44 45 46 47 48 49 50 51 SCK tV IO0 4 8 Dummy Cycles 0 4 0 4 0 4 0 ... Data Out 1 Data Out 2 Data Out 3 Data Out 4 IO1 5 1 5 1 5 1 5 1 ... IO2 6 2 6 2 6 2 6 2 ... IO3 7 3 7 3 7 3 7 3 ... Note: Dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 74 IS25LP512M IS25WP512M 8.9 FAST READ QUAD I/O OPERATION (FRQIO, EBh or 4FRQIO, ECh) The FRQIO/4FRQIO instruction allows the address bits to be input four bits at a time. This may allow for code to be executed directly from the SPI in some applications. A Quad Enable (QE) bit of Status Register must be set to "1" before sending the Fast Read Quad I/O instruction.  EBh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  EBh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  ECh is followed by a 4-byte address (A31-A0) The FRQIO/4FRQIO instruction code is followed by three or four address bytes as above and dummy cycles (configurable, default is 6 clocks), transmitted via the IO3, IO2, IO1 and IO0 lines, with each group of four bits latched-in during the rising edge of SCK. The address of MSB inputs on IO3, the next bit on IO2, the next bit on IO1, the next bit on IO0, and continue to shift in alternating on the four. Depending on the usage of AX read operation mode, a mode byte may be located after address input. The first data byte addressed is shifted out on the IO3, IO2, IO1 and IO0 lines, with each group of four bits shifted out at a maximum frequency f CT, during the falling edge of SCK. The first bit (MSB) is output on IO3, while simultaneously the second bit is output on IO2, the third bit is output on IO1, etc. Figures 8.15 and 8.16 illustrates the timing sequence. The first byte addressed can be at any memory location. The address is automatically incremented after each byte of data is shifted out. When the highest address is reached, the address counter will roll over to the 000000h address, allowing the entire memory to be read with a single FRQIO/4FRQIO instruction. FRQIO/4FRQIO instruction is terminated by driving CE# high (VIH). The device supports the AX read operation by applying mode bits during dummy period. Mode bits consist of 8 bits, such as M7 to M0. Two cycles after address input are reserved for Mode bits in FRQIO/4FRQIO execution. M7 to M4 are important for enabling this mode. M3 to M0 become don’t care for future use. When M[7:4]=1010(Ah), it enables the AX read operation and subsequent FRQIO/4FRQIO execution skips command code. It saves cycles as described in Figures 8.17 and 8.18. When the code is different from AXh (where X is don’t care), the device exits the AX read operation. After finishing the read operation, device becomes ready to receive a new command. SPI or QPI mode configuration retains the prior setting. Mode bit must be applied during dummy cycles. Number of dummy cycles in Table 6.11 includes number of mode bit cycles. If dummy cycles are configured as 6 cycles, data output will start right after mode bits and 4 additional dummy cycles are applied. If the FRQIO/4FRQIO instruction is issued while an Erase, Program or Write cycle is in process (WIP=1) the instruction is ignored and will not have any effects on the current cycle. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 75 IS25LP512M IS25WP512M Figure 8.15 Fast Read Quad I/O Sequence (EBh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 15 SCK Mode 0 3-byte Address IO0 20 16 12 8 4 0 4 0 21 17 13 9 5 1 5 1 IO2 22 18 14 10 6 2 6 2 IO3 23 19 15 11 7 3 7 3 Instruction = EBh High Impedance IO1 Mode Bits CE # 16 17 18 19 20 21 23 22 24 25 26 27 28 29 30 31 ... SCK 6 Dummy Cycles tV Data Out 1 Data Out 2 Data Out 3 Data Out 4 Data Out 5 Data Out 6 IO0 4 0 4 0 4 0 4 0 4 0 4 0 ... IO1 5 1 5 1 5 1 5 1 5 1 5 1 ... 6 2 6 2 6 2 6 2 6 2 6 2 ... 7 3 7 3 7 3 7 3 7 3 7 3 ... IO2 IO3 Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 76 IS25LP512M IS25WP512M Figure 8.16 Fast Read Quad I/O Sequence (EBh [EXTADD=1] or ECh, 4-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 15 SCK Mode 0 4-byte Address IO0 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1 IO2 30 26 22 18 14 10 6 2 IO3 31 27 23 19 15 11 7 3 25 26 27 28 29 30 31 ... Instruction = EBh/ECh High Impedance IO1 CE # 16 17 18 19 20 21 23 22 24 SCK 6 Dummy Cycles tV Data Out 1 Data Out 2 Data Out 3 Data Out 4 Data Out 5 IO0 4 0 4 0 4 0 4 0 4 0 4 0 ... IO1 5 1 5 1 5 1 5 1 5 1 5 1 ... 6 2 6 2 6 2 6 2 6 2 6 2 ... 7 3 7 3 7 3 7 3 7 3 7 3 ... IO2 IO3 Mode Bits Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 77 IS25LP512M IS25WP512M Figure 8.17 Fast Read Quad I/O AX Read Sequence (EBh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... SCK Mode 0 6 Dummy Cycles 3-byte Address tV Data Out 1 Data Out 2 IO0 20 16 12 8 4 0 4 0 4 0 4 0 ... IO1 21 17 13 9 5 1 5 1 5 1 5 1 ... IO2 22 18 14 10 6 2 6 2 6 2 6 2 ... IO3 23 19 15 11 7 3 7 3 7 3 7 3 ... Mode Bits Notes: 1. If the mode bits=AXh (where X is don’t care), it will keep executing the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 78 IS25LP512M IS25WP512M Figure 8.18 Fast Read Quad I/O AX Read Sequence (EBh [EXTADD=1] or ECh, 4-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... SCK Mode 0 6 Dummy Cycles 4-byte Address tV Data Out 1 IO0 28 24 20 16 12 8 4 0 4 0 4 0 ... IO1 29 25 21 17 13 9 5 1 5 1 5 1 ... IO2 30 26 22 18 14 10 6 2 6 2 6 2 ... IO3 31 27 23 19 15 11 7 3 7 3 7 3 ... Mode Bits Notes: 1. If the mode bits=AXh (where X is don’t care), it will keep executing the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 79 IS25LP512M IS25WP512M FAST READ QUAD I/O OPERATION IN QPI MODE (FRQIO, EBh or 4FRQIO, ECh) The FRQIO/4FRQIO instruction in QPI mode is used to read memory data at up to a 133MHz clock. It is not required to set QE bit to “1”.before Fast Read Quad I/O instruction in QPI mode. The FRQIO/4FRQIO instruction in QPI mode utilizes all four IO lines to input the instruction code so that only two clocks are required, while the FRQIO/4FRQIO instruction requires that the byte-long instruction code is shifted into the device only via IO0 line in eight clocks. As a result, 6 command cycles will be reduced by the FRQIO/4FRQIO QPI instruction. In addition, subsequent address and data out are shifted in/out via all four IO lines like the FRQIO/4FRQIO instruction. In fact, except for the command cycle, the FRQIO/4FRQIO operation in QPI mode is exactly same as the FRQIO/4FRQIO operation in SPI mode. The device supports the AX read operation by applying mode bits during dummy period. Mode bits consist of 8 bits, such as M7 to M0. Two cycles after address input are reserved for Mode bits in FRQIO/4FRQIO execution. M7 to M4 are important for enabling this mode. M3 to M0 become don’t care for future use. When M[7:4]=1010(Ah), it enables the AX read operation and subsequent FRQIO/4FRQIO execution skips command code. It saves cycles as described in Figures 8.17 and 8.18. When the code is different from AXh (where X is don’t care), the device exits the AX read operation. After finishing the read operation, device becomes ready to receive a new command. SPI or QPI mode configuration retains the prior setting. Mode bit must be applied during dummy cycles. Number of dummy cycles in Table 6.11 includes number of mode bit cycles. If dummy cycles are configured as 6 cycles, data output will start right after mode bits and 4 additional dummy cycles are applied. If the FRQIO/4FRQIO instruction in QPI mode is issued while an Erase, Program or Write cycle is in process (WIP=1) the instruction is ignored and will not have any effects on the current cycle. Figure 8.19 Fast Read Quad I/O Sequence In QPI Mode (EBh [EXTADD=0], 3-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 ... 13 14 15 16 17 ... SCK Mode 0 Mode Bits IO[3:0] EBh Instruction 23:20 19:16 15:12 11:8 3-byte Address 7:4 3:0 7:4 3:0 6 Dummy Cycles tV 7:4 3:0 Data 1 7:4 3:0 ... Data 2 Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 80 IS25LP512M IS25WP512M Figure 8.20 Fast Read Quad I/O Sequence In QPI Mode (EBh [EXTADD=1] or ECh, 4-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 ... 15 16 17 ... SCK Mode 0 Mode Bits IO[3:0] EBh/ECh 31:28 27:24 23:20 18:16 15:12 11:8 Instruction 4-byte Address 7:4 3:0 7:4 3:0 6 Dummy Cycles tV 7:4 3:0 ... Data 1 Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 81 IS25LP512M IS25WP512M 8.10 PAGE PROGRAM OPERATION (PP, 02h or 4PP, 12h) The Page Program (PP/4PP) instruction allows up to 256/512 bytes data to be programmed into memory in a single operation. The destination of the memory to be programmed must be outside the protected memory area set by the Block Protection bits (BP3, BP2, BP1, BP0) or ASP. A PP/4PP instruction which attempts to program into a page that is write-protected will be ignored. Before the execution of PP/4PP instruction, the Write Enable Latch (WEL) must be enabled through a Write Enable (WREN) instruction.  02h (EXTADD=0) is followed by a 3-byte address (A23-A0) or  02h (EXTADD=1) is followed by a 4-byte address (A31-A0) or  12h is followed by a 4-byte address (A31-A0) The PP/4PP instruction code, three or four address bytes as above and program data (1 to 256/512 bytes) are input via the SI line. Program operation will start immediately after the CE# is brought high, otherwise the PP/4PP instruction will not be executed. The internal control logic automatically handles the programming voltages and timing. The progress or completion of the program operation can be determined by reading the WIP bit. If the WIP bit is “1”, the program operation is still in progress. If WIP bit is “0”, the program operation has completed. If more than 256/512 bytes data are sent to a device, the address counter rolls over within the same page, the previously latched data are discarded, and the last 256/512 bytes are kept to be programmed into the page. The starting byte can be anywhere within the page. When the end of the page is reached, the address will wrap around to the beginning of the same page. If the data to be programmed are less than a full page, the data of all other bytes on the same page will remain unchanged. Notes: A program operation can alter “1”s into “0”s, but an erase operation is required to change “0”s back to “1”s. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 82 IS25LP512M IS25WP512M Figure 8.21 Page Program Sequence In SPI Mode (02h [EXTADD=0], 3-byte address) 1 ... 7 8 9 ... 31 32 33 ... 39 ... ... 2079 Mode 3 0 2072 CE # SCK Mode 0 SI 3-byte Address Instruction = 02h 23 22 ... Data In 1 0 7 6 ... Data In 256 0 ... 7 ... 0 High Impedance SO Figure 8.22 Page Program Sequence In QPI Mode (02h [EXTADD=0], 3-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 7:4 3:0 7:4 3:0 7:4 3:0 7:4 3:0 7:4 3:0 ... SCK Mode 0 IO[3:0] 02h 23:20 19:16 15:12 11:8 3-byte Address Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Data In 1 Data In 2 Data In 3 Data In 4 83 IS25LP512M IS25WP512M Figure 8.23 Page Program Sequence In SPI Mode (02h [EXTADD=1] or 12h, 4-byte address) 1 ... 7 8 9 ... 39 40 41 ... 47 ... ... 2087 Mode 3 0 2080 CE # SCK Mode 0 SI 4-byte Address Instruction = 02h/12h 31 30 ... Data In 1 0 7 6 ... Data In 256 0 ... 7 ... 0 High Impedance SO Figure 8.24 Page Program Sequence In QPI Mode (02h [EXTADD=1] or 12h, 4-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 7:4 3:0 7:4 3:0 7:4 3:0 7:4 3:0 ... SCK Mode 0 IO[3:0] 02h/12h 31:28 27:24 23:20 19:16 15:12 11:8 4-byte Address Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Data In 1 Data In 2 Data In 3 84 IS25LP512M IS25WP512M 8.11 QUAD INPUT PAGE PROGRAM OPERATION (PPQ, 32h/38h or 4PPQ, 34h/3Eh) The Quad Input Page Program instruction allows up to 256/512 bytes data to be programmed into memory in a single operation with four pins (IO0, IO1, IO2 and IO3). The destination of the memory to be programmed must be outside the protected memory area set by the Block Protection (BP3, BP2, BP1, BP0) bits or ASP. A Quad Input Page Program instruction which attempts to program into a page that is write-protected will be ignored. Before the execution of Quad Input Page Program instruction, the QE bit in the Status Register must be set to “1” and the Write Enable Latch (WEL) must be enabled through a Write Enable (WREN) instruction.  32h/38h (EXTADD=0) is followed by a 3-byte address (A23-A0) or  32h/38h (EXTADD=1) is followed by a 4-byte address (A31-A0) or  34h/3Eh is followed by a 4-byte address (A31-A0) Program operation will start immediately after the CE# is brought high, otherwise the Quad Input Page Program instruction will not be executed. The internal control logic automatically handles the programming voltages and timing. The progress or completion of the program operation can be determined by reading the WIP bit. If the WIP bit is “1”, the program operation is still in progress. If WIP bit is “0”, the program operation has completed. If more than 256/512 bytes data are sent to a device, the address counter rolls over within the same page, the previously latched data are discarded, and the last 256/512 bytes data are kept to be programmed into the page. The starting byte can be anywhere within the page. When the end of the page is reached, the address will wrap around to the beginning of the same page. If the data to be programmed are less than a full page, the data of all other bytes on the same page will remain unchanged. Note: A program operation can alter “1”s into “0”s, but an erase operation is required to change “0”s back to “1”s. Figure 8.25 Quad Input Page Program operation (32h/38h [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 ... 31 32 33 34 35 ... SCK Mode 0 3-byte Address Data In 1 Data In 2 4 0 4 0 ... 5 1 5 1 ... IO2 6 2 6 2 ... IO3 7 3 7 3 ... IO0 IO1 Instruction = 32h/38h High Impedance Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 23 22 ... 0 85 IS25LP512M IS25WP512M Figure 8.26 Quad Input Page Program operation (32h/38h [EXTADD=1] or 34h/3Eh, 4-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 ... 39 40 41 42 43 ... SCK Mode 0 4-byte Address Data In 1 Data In 2 4 0 4 0 ... 5 1 5 1 ... IO2 6 2 6 2 ... IO3 7 3 7 3 ... IO0 IO1 Instruction = 32h/38h/34h/3Eh 31 30 High Impedance ... 0 8.12 ERASE OPERATION The Erase command sets all bits in the addressed sector or block to “1”s. The memory array of the device is organized into uniform 4 Kbyte sectors or 32/64/256 Kbyte uniform blocks (a block consists of eight/sixteen adjacent sectors respectively). Before a byte is reprogrammed, the sector or block that contains the byte must be erased (erasing sets bits to “1”). In order to erase the device, there are three erase instructions available: Sector Erase (SER), Block Erase (BER), and Chip Erase (CER). A sector erase operation allows any individual sector to be erased without affecting the data in other sectors. A block erase operation erases any individual block. A chip erase operation erases the whole memory array of a device. A sector erase, block erase, or chip erase operation can be executed prior to any programming operation. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 86 IS25LP512M IS25WP512M 8.13 SECTOR ERASE OPERATION (SER, D7h/20h or 4SER, 21h) A Sector Erase (SER/4SER) instruction erases a 4 Kbyte sector before the execution of a SER/4SER instruction, the Write Enable Latch (WEL) must be set via a Write Enable (WREN) instruction. The WEL bit is automatically reset after the completion of Sector Erase operation.  D7h/20h (EXTADD=0) is followed by a 3-byte address (A23-A0) or  D7h/20h (EXTADD=1) is followed by a 4-byte address (A31-A0) or  21h is followed by a 4-byte address (A31-A0) A SER/4SER instruction is entered, after CE# is pulled low to select the device and stays low during the entire instruction sequence The SER/4SER instruction code, and three or four address bytes as above are input via SI. Erase operation will start immediately after CE# is pulled high. The internal control logic automatically handles the erase voltage and timing. The progress or completion of the erase operation can be determined by reading the WIP bit. If the WIP bit is “1”, the erase operation is still in progress. If the WIP bit is “0”, the erase operation has been completed. Figure 8.27 Sector Erase Sequence In SPI Mode (D7h/20h [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 ... 28 29 30 31 1 0 SCK Mode 0 3-byte Address SI SO Instruction = D7h/20h 23 22 21 ... 3 2 High Impedance Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 87 IS25LP512M IS25WP512M Figure 8.28 Sector Erase Sequence In SPI Mode (D7h/20h [EXTADD=1] or 21h, 4-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 ... 36 37 38 39 1 0 SCK Mode 0 4-byte Address SI Instruction = D7h/20h/21h 31 30 29 ... 3 2 High Impedance SO Figure 8.29 Sector Erase Sequence In QPI Mode (D7h/20h [EXTADD=0], 3-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 7:4 3:0 SCK Mode 0 3-byte Address D7h/20h IO[3:0] 23:20 19:16 15:12 11:8 Figure 8.30 Sector Erase Sequence In QPI Mode (D7h/20h [EXTADD=1] or 21h, 4-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 7:4 3:0 SCK Mode 0 IO[3:0] 4-byte Address D7h/ 20h/21h 31:28 27:24 23:20 19:16 15:12 11:8 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 88 IS25LP512M IS25WP512M 8.14 BLOCK ERASE OPERATION (BER32K:52h or 4BER32K:5Ch, BER64K/256K:D8h or 4BER64K/256K:DCh) A Block Erase (BER) instruction erases a 32/64 or 32/256 Kbyte block. Before the execution of a BER instruction, the Write Enable Latch (WEL) must be set via a Write Enable (WREN) instruction. The WEL is reset automatically after the completion of a block erase operation.  52h/D8h (EXTADD=0) is followed by a 3-byte address (A23-A0) or  52h/D8h (EXTADD=1) is followed by a 4-byte address (A31-A0) or  5Ch/DCh is followed by a 4-byte address (A31-A0) The BER instruction code and three or four address bytes as above are input via SI. Erase operation will start immediately after the CE# is pulled high, otherwise the BER instruction will not be executed. The internal control logic automatically handles the erase voltage and timing. Figure 8.31 Block Erase (64K/256K) Sequence In SPI Mode (D8h [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 ... 28 29 30 31 2 1 0 SCK Mode 0 3-byte Address SI Instruction = D8h 23 22 21 ... 3 High Impedance SO Figure 8.32 Block Erase (64K/256K) Sequence In SPI Mode (D8h [EXTADD=1] or DCh, 4-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 ... 36 37 38 39 2 1 0 SCK Mode 0 4-byte Address SI SO Instruction = D8h/DCh 31 29 28 ... 3 High Impedance Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 89 IS25LP512M IS25WP512M Figure 8.33 Block Erase (64K/256K) Sequence In QPI Mode (D8h [EXTADD=0], 3-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 7:4 3:0 SCK Mode 0 3-byte Address D8h IO[3:0] 23:20 19:16 15:12 11:8 Figure 8.34 Block Erase (64K/256K) Sequence In QPI Mode (D8h [EXTADD=1] or DCh, 4-byte address) CE# Mode 3 0 1 2 3 4 5 7 6 8 9 7:4 3:0 SCK Mode 0 4-byte Address D8h/DCh IO[3:0] 31:28 27:24 23:20 19:16 15:12 11:8 Figure 8.35 Block Erase (32K) Sequence In SPI Mode (52h [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 ... 28 29 30 31 2 1 0 SCK Mode 0 3-byte Address SI SO Instruction = 52h 23 22 21 ... 3 High Impedance Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 90 IS25LP512M IS25WP512M Figure 8.36 Block Erase (32K) Sequence In SPI Mode (52h [EXTADD=1] or 5Ch, 4-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 ... 36 37 38 39 2 1 0 SCK Mode 0 4-byte Address SI Instruction = 52h/5Ch 31 29 28 ... 3 High Impedance SO Figure 8.37 Block Erase (32K) Sequence In QPI Mode (52h [EXTADD=0], 3-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 7:4 3:0 SCK Mode 0 3-byte Address 52h IO[3:0] 23:20 19:16 15:12 11:8 Figure 8.38 Block Erase (32K) Sequence In QPI Mode (52h [EXTADD=1] or 5Ch, 4-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 7:4 3:0 SCK Mode 0 IO[3:0] 4-byte Address 52h/5Ch 31:28 27:24 23:20 19:16 15:12 11:8 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 91 IS25LP512M IS25WP512M 8.15 CHIP ERASE OPERATION (CER, C7h/60h) A Chip Erase (CER) instruction erases the entire memory array. Before the execution of CER instruction, the Write Enable Latch (WEL) must be set via a Write Enable (WREN) instruction. The WEL is automatically reset after completion of a chip erase operation. The CER instruction code is input via the SI. Erase operation will start immediately after CE# is pulled high, otherwise the CER instruction will not be executed. The internal control logic automatically handles the erase voltage and timing. Chip Erase (CER) instruction can be executed only when Block Protection (BP3~BP0) bits are set to 0s. If the BP bits are not 0, the CER command is not executed and E_ERR and PROT_E are set. Chip Erase (CER) instruction will skip sectors/blocks protected by ASP (DYB bits or PPB bits) and will not set E_ERR and PROT_E if sectors/blocks are protected by ASP only. Figure 8.39 Chip Erase Sequence In SPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 SI Instruction = C7h/60h SO High Impedance Figure 8.40 Chip Erase Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 C7h/60h 92 IS25LP512M IS25WP512M 8.16 WRITE ENABLE OPERATION (WREN, 06h) The Write Enable (WREN) instruction is used to set the Write Enable Latch (WEL) bit. The WEL bit is reset to the write-protected state after power-up. The WEL bit must be write enabled before any write operation, including Sector Erase, Block Erase, Chip Erase, Page Program, Program Information Row, Write Non-Volatile Status Register, Write Function Register, Set Non-Volatile Read Register, Set Non-Volatile Extended Read Register, , Set Volatile Read Register and Set Volatile Extended Read Register. The WEL bit will be reset to the writeprotected state automatically upon completion of a write operation. The WREN instruction is required before any above operation is executed. Figure 8.41 Write Enable Sequence In SPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = 06h SI High Impedance SO Figure 8.42 Write Enable Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 06h 93 IS25LP512M IS25WP512M 8.17 WRITE DISABLE OPERATION (WRDI, 04h) The Write Disable (WRDI) instruction resets the WEL bit and disables all write instructions. The WRDI instruction is not required after the execution of a write instruction, since the WEL bit is automatically reset. Figure 8.43 Write Disable Sequence In SPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = 04h SI High Impedance SO Figure 8.44 Write Disable Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 04h 94 IS25LP512M IS25WP512M 8.18 READ STATUS REGISTER OPERATION (RDSR, 05h) The Read Status Register (RDSR) instruction provides access to the Status Register. During the execution of a program, erase or Write Status Register operation, the RDSR instruction will be executed, which can be used to check the progress or completion of an operation by reading the WIP bit. Figure 8.45 Read Status Register Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK Mode 0 SI Instruction = 05h tV SO Data Out 7 6 5 4 3 2 1 Figure 8.46 Read Status Register Sequence In QPI Mode CE# Mode 3 0 1 2 3 SCK Mode 0 tV IO[3:0] 05h 7:4 3:0 Data Out Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 95 0 IS25LP512M IS25WP512M 8.19 WRITE STATUS REGISTER OPERATION (WRSR, 01h) The Write Status Register (WRSR) instruction allows the user to enable or disable the block protection and Status Register write protection features by writing “0”s or “1”s into non-volatile BP3, BP2, BP1, BP0, and SRWD bits. Also WRSR instruction allows the user to disable or enable quad operation by writing “0” or “1” into QE bit. To write Status Register bits, a standard Write Enable (06h) instruction must previously have been executed for the device to accept Write Status Register (01h) instruction (Status Register bit WEL must equal 1). Figure 8.47 Write Status Register Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 15 2 1 0 SCK Mode 0 Data In SI SO Instruction = 01h 7 6 2 3 7:4 3:0 5 4 3 High Impedence Figure 8.48 Write Status Register QPI Sequence CE# Mode 3 0 1 SCK Mode 0 IO[3:0] 01h Data In Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 96 IS25LP512M IS25WP512M 8.20 READ FUNCTION REGISTER OPERATION (RDFR, 48h) The Read Function Register (RDFR) instruction provides access to the Function Register. Refer to Table 6.6 Function Register Bit Definition for more detail. Figure 8.49 Read Function Register Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK Mode 0 SI Instruction = 48h tV SO Data Out 7 6 5 4 3 2 1 Figure 8.50 Read Function Register QPI Sequence CE# Mode 3 0 1 2 3 SCK Mode 0 tV IO[3:0] 48h 7:4 3:0 Data Out Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 97 0 IS25LP512M IS25WP512M 8.21 WRITE FUNCTION REGISTER OPERATION (WRFR, 42h) The Write Function Register (WRFR) instruction allows the user to disable dedicated RESET# pin or ball on 16-pin SOIC or 24 ball TFBGA by setting Dedicated RESET# Disable bit to “1”. Also Information Row Lock bits (IRL3~IRL0) can be set to “1” individually by WRFR instruction in order to lock Information Row. Since Dedicated RESET# Disable bit and IRL bits are OTP, once they are set to “1”, they cannot be set back to “0” again Figure 8.51 Write Function Register Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 11 12 13 14 15 2 1 0 SCK Mode 0 Data In SI SO Instruction = 42h 7 6 2 3 7:4 3:0 5 4 3 High Impedence Figure 8.52 Write Function Register QPI Sequence CE# Mode 3 0 1 SCK Mode 0 IO[3:0] 42h Data In Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 98 IS25LP512M IS25WP512M 8.22 ENTER QUAD PERIPHERAL INTERFACE (QPI) MODE OPERATION (QPIEN,35h; QPIDI,F5h) The Enter QPI (QPIEN) instruction, 35h, enables the Flash device for QPI bus operation. Upon completion of the instruction, all instructions thereafter will be 4-bit multiplexed input/output until a power cycle or an Exit QPI instruction is sent to device. The Exit QPI instruction, F5h, resets the device to 1-bit SPI protocol operation. To execute an Exit QPI operation, the host drives CE# low, sends the Exit QPI command cycle, then drives CE# high. The device just accepts QPI (2 clocks) command cycles. Figure 8.53 Enter Quad Peripheral Interface (QPI) Mode Sequence CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = 35h SI High Impedance SO Figure 8.54 Exit Quad Peripheral Interface (QPI) Mode Sequence CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 F5h 99 IS25LP512M IS25WP512M 8.23 PROGRAM/ERASE SUSPEND & RESUME The device allows the interruption of Sector Erase, Block Erase, or Page Program operations to conduct other operations. 75h/B0h command for suspend and 7Ah/30h for resume will be used. (SPI/QPI all acceptable) Function Register bit2 (PSUS) and bit3 (ESUS) are used to check whether or not the device is in suspend mode. Suspend to read ready timing (tSUS): 100µs (TYP) Resume to another suspend timing (tRS): 80µs (TYP) SUSPEND DURING SECTOR-ERASE OR BLOCK-ERASE (PERSUS 75h/B0h) The Suspend command allows the interruption of Sector Erase and Block Erase operations. But Suspend command will be ignored during Chip Erase operation. After the Suspend command, other commands include array read operation can be accepted. But Write Status Register command (01h) and Erase instructions are not allowed during Erase Suspend. Also, array read for being erased sector/block is not allowed. To execute Erase Suspend operation, the host drives CE# low, sends the Suspend command cycle (75h/B0h), then drives CE# high. The Function Register indicates that the Erase has been suspended by setting the ESUS bit from “0” to “1”, but the device will not accept another command until it is ready. To determine when the device will accept a new command, poll the WIP bit or wait the specified time t SUS. When ESUS bit is set to “1”, the Write Enable Latch (WEL) bit clears to “0”. SUSPEND DURING PAGE PROGRAMMING (PERSUS 75h/B0h) The Suspend command also allows the interruption of all array Program operations. After the Suspend command, other commands include array read operation can be accepted can be accepted. But Write Status Register instruction (01h) and Program instructions are not allowed during Program Suspend. Also, array read for being programmed page is not allowed. To execute the Program Suspend operation, the host drives CE# low, sends the Suspend command cycle (75h/B0h), then drives CE# high. The Function Register indicates that the programming has been suspended by setting the PSUS bit from “0” to “1”, but the device will not accept another command until it is ready. To determine when the device will accept a new command, poll the WIP bit or wait the specified time t SUS. When PSUS bit is set to “1”, the Write Enable Latch (WEL) bit clears to “0”. PROGRAM/ERASE RESUME (PERRSM 7Ah/30h) The Program/Erase Resume restarts the Program or Erase command that was suspended, and clears the suspend status bit in the Function Register (ESUS or PSUS bits) to “0”. To execute the Program/Erase Resume operation, the host drives CE# low, sends the Program/Erase Resume command cycle (7Ah/30h), then drives CE# high. A cycle is two nibbles long, most significant nibble first. To issue another Erase Suspend operation after Erase Resume operation, Erase Resume to another Erase Suspend delay (tRS) is required, but it could require longer Erase time to complete Erase operation. To determine if the internal, self-timed Write operation completed, poll the WIP bit. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 100 IS25LP512M IS25WP512M Table 8.7 Instructions accepted during Suspend Instruction Allowed Operation Suspended Name Hex Code Program or Erase NORD 03h Normal Read Mode Program or Erase 4NORD 13h 4-byte Address Normal Read Mode Program or Erase FRD 0Bh Fast Read Mode Program or Erase 4FRD 0Ch 4-byte Address Fast Read Mode Program or Erase FRDIO BBh Fast Read Dual I/O Program or Erase 4FRDIO BCh 4-byte Address Fast Read Dual I/O Program or Erase FRDO 3Bh Fast Read Dual Output Program or Erase 4FRDO 3Ch 4-byte Address Fast Read Dual Output Program or Erase FRQIO EBh Fast Read Quad I/O Program or Erase 4FRQIO ECh 4-byte Address Fast Read Quad I/O Program or Erase FRQO 6Bh Fast Read Quad Output Program or Erase 4FRQO 6Ch 4-byte Address Fast Read Quad Output Program or Erase FRDTR 0Dh Fast Read DTR Mode Program or Erase 4FRDTR 0Eh 4-byte Address Fast Read DTR Mode Program or Erase FRDDTR BDh Fast Read Dual I/O DTR Program or Erase 4FRDDTR BEh 4-byte Address Fast Read Dual I/O DTR Program or Erase FRQDTR EDh Fast Read Quad I/O DTR Program or Erase 4FRQDTR EEh 4-byte Address Fast Read Quad I/O DTR Program or Erase WREN 06h Write Enable Program or Erase WRDI 04hh Write Disable Program or Erase RDSR 05h Read Status Register Program or Erase RDFR 48h Read Function Register Program or Erase RDBR 16h/C8h Program or Erase RDRP 61h Read Read Parameters (Volatile) Program or Erase RDERP 81h Read Extended Read Parameters (Volatile) Program or Erase RDID ABh Read Manufacturer and Product ID Program or Erase RDJDID 9Fh Read Manufacturer and Product ID by JEDEC ID Command Program or Erase RDMDID 90h Read Manufacturer and Device ID Program or Erase RDJDIDQ AFh Read JEDEC ID QPI mode Program or Erase RDUID 4Bh Read Unique ID Number Program or Erase RDSFDP 5Ah SFDP Read Program or Erase CLERP 82h Clear Extended Read Register Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Operation Read Bank Address Register 101 IS25LP512M IS25WP512M Operation Suspended Program or Erase Instruction Allowed Name PERRSM Hex Code 7Ah/30h Operation Program/Erase Resume Program or Erase SRPV C0/63h Program or Erase SERPV 83h Program or Erase WRBRV 17h/C5 Program or Erase EN4B B7h Enter 4-byte Address Mode Program or Erase EX4B 29h Exit 4-byte Address Mode Program or Erase RDPPB FCh Read PPB Program or Erase 4RDPPB F2h 4-byte Address Read PPB Program or Erase RDDYB FAh Read DYB Program or Erase 4RDDYB E0h 4-byte Address Read DYB Program or Erase RDPWD E7h Read Password Program or Erase RDPLB A7h Read PPB Lock Bit Program or Erase RDASP 2Bh Read ASP Program or Erase RDDLP 41h Read Data Learning Pattern Program or Erase WRVDLR 4Ah Write Volatile DLP Register Erase SECLOCK 24h Sector Lock Erase SECUNLOCK 26h Sector Unlock Erase 4SECUNLOCK 25h 4-byte Address Sector Unlock Erase PERSUS 75h/B0h Erase PP 02h Serial Input Page Program Erase 4PP 12h 4-byte Address Serial Input Page Program Erase PPQ 32h/38h Quad Input Page Program Erase 4PPQ 34h/3Eh 4-byte Address Quad Input Page Program Erase WRDYB FBh Write DYB Erase 4WRDYB E0h 4-byte Address Write DYB Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Set Read Parameters (Volatile) Set Extended Read Parameters (Volatile) Write Bank Address Register (Volatile) Program/Erase Suspend 102 IS25LP512M IS25WP512M 8.24 ENTER DEEP POWER DOWN (DP, B9h) The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (enter into Power-down mode). During this mode, standby current is reduced from I sb1 to Isb2. While in the Power-down mode, the device is not active and all Write/Program/Erase instructions are ignored. The instruction is initiated by driving the CE# pin low and shifting the instruction code into the device. The CE# pin must be driven high after the instruction has been latched, or Power-down mode will not engage. Once CE# pin driven high, the Power-down mode will be entered within the time duration of tDP. While in the Power-down mode only the Release from Powerdown/RDID instruction, which restores the device to normal operation, will be recognized. All other instructions are ignored, including the Read Status Register instruction which is always available during normal operation. Ignoring all but one instruction makes the Power Down state a useful condition for securing maximum write protection. It is available in both SPI and QPI mode. Figure 8.55 Enter Deep Power Down Mode Sequence In SPI Mode tDP CE # Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 SI SO Instruction = B9h High Impedance Figure 8.56 Enter Deep Power Down Mode Sequence In QPI Mode tDP CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 B9h 103 IS25LP512M IS25WP512M 8.25 RELEASE DEEP POWER DOWN (RDPD, ABh) The Release Deep Power-down/Read Device ID instruction is a multi-purpose command. To release the device from the deep power-down mode, the instruction is issued by driving the CE# pin low, shifting the instruction code into the device and driving CE# high. Releasing the device from Power-down mode will take the time duration of tRES1 before normal operation is restored and other instructions are accepted. The CE# pin must remain high during the t RES1 time duration. If the Release Deep Power-down/RDID instruction is issued while an Erase, Program or Write cycle is in progress (WIP=1) the instruction is ignored and will not have any effects on the current cycle. Figure 8.57 Release Power Down Mode Sequence In SPI Mode tRES1 CE # Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 SI SO Instruction = ABh High Impedance Figure 8.58 Release Power Down Mode Sequence In QPI Mode tRES1 CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 ABh 104 IS25LP512M IS25WP512M 8.26 SET READ PARAMETERS OPERATION (SRPNV: 65h, SRPV: C0h/63h) Set Read Parameter Bits This device supports configurable burst length and dummy cycles in both SPI and QPI mode by setting three bits (P2, P1, P0) and four bits (P6, P5, P4, P3) within the Read Register, respectively. To set those bits the SRPNV and SRPV operation instruction are used. Details regarding burst length and dummy cycles can be found in Table 6.9, Table 6.10, and Table 6.11. HOLD#/RESET# function selection (P7) bit in the Read Register can be set with the SRPNV and SRPV operation as well, in order to select HOLD#/RESET# pin as RESET# or HOLD#. For the device with dedicated RESET# pin (or ball), RESET# pin (or ball) will be a separate pin (or ball) and it is independent of the P7 bit setting in Read Register. SRPNV is used to set the non-volatile Read Register, while SRPV is used to set the volatile Read Register. To write non-volatile Read Parameter bits, a standard Write Enable (06h) instruction must previously have been executed for the device to accept SRPNV(65h) instruction (Status Register bit WEL must equal “1”). To write volatile Read Parameter bits (SRPV), 63h or C0h command can be used. When using 63h instruction, a standard Write Enable (06h) instruction must previously have been executed for the device to accept SRPV (63h) instruction (Status Register bit WEL must equal “1”). But C0h instruction does not require a standard Write Enable (06h) operation. (Status Register bit WEL remains “0”). Note: When SRPNV is executed, the volatile Read Register is set as well as the non-volatile Read Register. Figure 8.59 Set Read Parameters Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 1 0 SCK Mode 0 Data In SI SO Instruction = 65h or C0h/63h 7 6 2 3 7:4 3:0 5 4 3 High Impedence Figure 8.60 Set Read Parameters Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] 65h or C0h/63h Data In Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 105 IS25LP512M IS25WP512M Read with “8/16/32/64-Byte Wrap Around” The device is capable of burst read with wrap around in both SPI and QPI mode. The size of burst length is configurable by using P0, P1, and P2 bits in Read Register. P2 bit (Wrap enable) enables the burst mode feature. P0 and P1 define the size of burst. Burst lengths of 8, 16, 32, and 64 bytes are supported. By default, address increases by one up through the entire array. By setting the burst length, the data being accessed can be limited to the length of burst boundary within a 256 byte page. The first output will be the data at the initial address which is specified in the instruction. Following data will come out from the next address within the burst boundary. Once the address reaches the end of boundary, it will automatically move to the first address of the boundary. CE# high will terminate the command. For example, if burst length of 8 and initial address being applied is 0h, following byte output will be from address 00h and continue to 01h,..,07h, 00h, 01h… until CE# terminates the operation. If burst length of 8 and initial address being applied is FEh(254d), following byte output will be from address FEh and continue to FFh, F8h, F9h, FAh, FBh, FCh, FDh, and repeat from FEh until CE# terminates the operation. The commands, “SRPV (65h) or SRPNV (C0h or 63h)”, are used to configure the burst length. If the following data input is one of “00h”,”01h”,”02h”, and ”03h”, the device will be in default operation mode. It will be continuous burst read of the whole array. If the following data input is one of “04h”,”05h”,”06h”, and ”07h”, the device will set the burst length as 8,16,32 and 64, respectively. To exit the burst mode, another “C0h or 63h” command is necessary to set P2 to 0. Otherwise, the burst mode will be retained until either power down or reset operation. To change burst length, another “C0h or 63h” command should be executed to set P0 and P1 (Detailed information in Table 6.9 Burst Length Data). All read commands will operate in burst mode once the Read Register is set to enable burst mode. Refer to Figure 8.59 and Figure 8.60 for instruction sequence. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 106 IS25LP512M IS25WP512M 8.27 SET EXTENDED READ PARAMETERS OPERATION (SERPNV: 85h, SERPV: 83h) Set Read Operational Driver Strength This device supports configurable Operational Driver Strength in both SPI and QPI modes by setting three bits (ODS0, ODS1, ODS2) within the Extended Read Register. To set the ODS bits the SERPNV and SERPV operation instructions are required. The device’s driver strength can be reduced as low as 12.50% of full drive strength. Details regarding the driver strength can be found in Table 6.14. SERPNV is used to set the non-volatile Extended Read register, while SERPV is used to set the volatile Extended Read register. Notes: 1. The default driver strength is set to 50%. 2. When SERPNV is executed, the volatile Read Extended Register is set as well as the non-volatile Read Extended Register. Figure 8.61 Set Extended Read Parameters Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 1 0 SCK Mode 0 Data In SI SO Instruction = 85h/83h 7 6 5 4 3 High Impedence Figure 8.62 Set Extended Read Parameters Sequence In QPI Mode CE# Mode 3 0 1 2 3 7:4 3:0 SCK Mode 0 IO[3:0] 85h/83h Data In Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 107 IS25LP512M IS25WP512M 8.28 READ READ PARAMETERS OPERATION (RDRP, 61h) Prior to, or after setting Read Register, the data of the Read Register can be confirmed by the RDRP command. The instruction is only applicable for the volatile Read Register, not for the non-volatile Read Register. Figure 8.63 Read Read Parameters Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK Mode 0 SI Instruction = 61h tV SO Data Out 7 6 5 4 3 2 1 Figure 8.64 Read Read Parameters Sequence In QPI Mode CE# Mode 3 0 1 2 3 SCK Mode 0 tV IO[3:0] 61h 7:4 3:0 Data Out Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 108 0 IS25LP512M IS25WP512M 8.29 READ EXTENDED READ PARAMETERS OPERATION (RDERP, 81h) Prior to, or after setting Extended Read Register, the data of the Extended Read Register can be confirmed by the RDERP command. The instruction is only applicable for the volatile Extended Read Register, not for the nonvolatile Extended Read Register. Figure 8.65 Read Extended Read Parameters Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK Mode 0 SI Instruction = 81h tV SO Data Out 7 6 5 4 3 2 1 Figure 8.66 Read Extended Read Parameters Sequence In QPI Mode CE# Mode 3 0 1 2 3 SCK Mode 0 tV IO[3:0] 81h 7:4 3:0 Data Out Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 109 0 IS25LP512M IS25WP512M 8.30 CLEAR EXTENDED READ REGISTER OPERATION (CLERP, 82h) A Clear Extended Read Register (CLERP) instruction clears PROT_E, P_ERR, and E_ERR error bits in the Extended Read Register to “0” when the error bits are set to “1”. Once the error bits are set to “1”, they remains set to “1” until they are cleared to “0” with a CLERP command. Figure 8.67 Clear Extended Read Register Sequence In SPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = 82h SI High Impedance SO Figure 8.68 Clear Extended Read Register Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 82h 110 IS25LP512M IS25WP512M 8.31 READ PRODUCT IDENTIFICATION (RDID, ABh) The Release from Power-down/Read Device ID instruction is a multi-purpose instruction. It can support both SPI and QPI modes. The Read Product Identification (RDID) instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as the table of Product Identification. The RDID instruction code is followed by three dummy bytes, each bit being latched-in on SI during the rising SCK edge. Then the Device ID is shifted out on SO with the MSB first, each bit been shifted out during the falling edge of SCK. The RDID instruction is ended by driving CE# high. The Device ID (ID7-ID0) outputs repeatedly if additional clock cycles are continuously sent to SCK while CE# is at low. Table 8.8 Product Identification Manufacturer ID (MF7-MF0) ISSI Serial Flash 9Dh Instruction ABh 90h Part Number Device ID (ID7-ID0) 9Fh Memory Type + Capacity (ID15-ID0) IS25LP512M 19h 601Ah IS25WP512M 19h 701Ah Figure 8.69 Read Product Identification Sequence CE # Mode 3 0 1 ... 7 8 9 ... 31 32 33 ... 39 SCK Mode 0 SI Instruction = ABh 3 Dummy Bytes tV SO Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Data Out Device ID (ID7-ID0) 111 IS25LP512M IS25WP512M Figure 8.70 Read Product Identification Sequence In QPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 8 9 SCK Mode 0 tV IO[3:0] ABh Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 6 Dummy Cycles Device ID (ID7-ID0) 112 IS25LP512M IS25WP512M 8.32 READ PRODUCT IDENTIFICATION BY JEDEC ID OPERATION (RDJDID, 9Fh; RDJDIDQ, AFh) The JEDEC ID READ instruction allows the user to read the manufacturer and product ID of devices. Refer to Table 8.8 Product Identification for Manufacturer ID and Device ID. After the JEDEC ID READ command (9Fh in SPI mode, AFh in QPI mode) is input, the Manufacturer ID is shifted out MSB first followed by the 2-byte electronic ID (ID15-ID0) that indicates Memory Type and Capacity, one bit at a time. Each bit is shifted out during the falling edge of SCK. If CE# stays low after the last bit of the 2-byte electronic ID, the Manufacturer ID and 2-byte electronic ID will loop until CE# is pulled high. Figure 8.71 Read Product Identification by JEDEC ID Read Sequence in SPI mode CE # Mode 3 0 1 ... 7 8 9 15 ... 16 17 ... 23 24 25 ... SCK Mode 0 SI Instruction = 9Fh tV Manufacturer ID (MF7-MF0) SO Capacity (ID7-ID0) Memory Type (ID15-ID8) Figure 8.72 RDJDID and RDJDIDQ (Read JEDEC ID) Sequence In QPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 IO[3:0] tV 9Fh/AFh 7:4 3:0 MF7-MF0 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 7:4 3:0 ID15-ID8 7:4 3:0 ID7-ID0 113 31 IS25LP512M IS25WP512M 8.33 READ DEVICE MANUFACTURER AND DEVICE ID OPERATION (RDMDID, 90h) The Read Device Manufacturer and Device ID (RDMDID) instruction allows the user to read the Manufacturer and product ID of devices. Refer to Table 8.8 Product Identification for Manufacturer ID and Device ID. The RDMDID instruction code is followed by two dummy bytes and one byte address (A7~A0), each bit being latched-in on SI during the rising edge of SCK. If one byte address is initially set as A0 = 0, then the Manufacturer ID is shifted out on SO with the MSB first followed by the device ID (ID7- ID0). Each bit is shifted out during the falling edge of SCK. If one byte address is initially set as A0 = 1, then Device ID7-ID0 will be read first followed by the Manufacturer ID. The Manufacturer and Device ID can be read continuously alternating between the two until CE# is driven high. Figure 8.73 Read Product Identification by RDMDID Sequence In SPI Mode (A0=0) CE # Mode 3 0 1 ... 7 8 9 ... 31 32 33 ... 39 40 41 ... 47 SCK Mode 0 SI Instruction = 90h 3-byte Address tV Device ID (ID7-ID0) Manufacturer ID (MF7-MF0) SO Notes: 1. ADDRESS A0 = 0, will output the 1-byte Manufacturer ID (MF7-MF0)  1-byte Device ID (ID7-ID0) ADDRESS A0 = 1, will output the 1-byte Device ID (ID7-ID0)  1-byte Manufacturer ID (MF7-MF0) 2. The Manufacturer and Device ID can be read continuously and will alternate from one to the other until CE# pin is pulled high. Figure 8.74 Read Product Identification by RDMDID Sequence In QPI Mode (A0=0) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 SCK Mode 0 tV IO[3:0] 90h 23:20 19:16 15:12 11:8 Instruction 3-byte Address 7:4 3:0 7:4 3:0 7:4 3:0 Manufacturer Device ID ID (MF7-MF0) (ID7-ID0) Notes: 1. ADDRESS A0 = 0, will output the 1-byte Manufacturer ID (MF7-MF0)  1-byte Device ID (ID7-ID0) ADDRESS A0 = 1, will output the 1-byte Device ID (ID7-ID0)  1-byte Manufacturer ID (MF7-MF0) 2. The Manufacturer and Device ID can be read continuously and will alternate from one to the other until CE# pin is pulled high. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 114 IS25LP512M IS25WP512M 8.34 READ UNIQUE ID NUMBER (RDUID, 4Bh) The Read Unique ID Number (RDUID) instruction accesses a factory-set read-only 16-byte number that is unique to the device. The ID number can be used in conjunction with user software methods to help prevent copying or cloning of a system. The RDUID instruction is instated by driving the CE# pin low and shifting the instruction code (4Bh) followed by 3 address bytes and dummy cycles (configurable, default is 8 clocks). After which, the 16-byte ID is shifted out on the falling edge of SCK as shown below. As a result, the sequence of RDUID instruction is same as FAST READ. RDUID sequence in QPI mode is also same as FAST READ sequence in QPI mode except for the instruction code. Refer to the FAST READ operation in QPI mode. Note: 16 bytes of data will repeat as long as CE# is low and SCK is toggling. Figure 8.75 RDUID Sequence In SPI Mode CE # Mode 3 0 1 ... 7 8 9 ... 31 32 33 ... 39 40 41 ... 47 ... SCK Mode 0 SI Instruction = 4Bh 3 Byte Address Dummy Cycles tV SO Data Out Note: Dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. A[23:16] A[15:9] A[8:4] A[3:0] XXh XXh 00h 0h Byte address XXh XXh 00h 1h Byte address XXh XXh 00h 2h Byte address XXh XXh 00h … Table 8.9 Unique ID Addressing XXh XXh 00h Fh Byte address Note: XX means “don’t care”. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 115 IS25LP512M IS25WP512M 8.35 READ SFDP OPERATION (RDSFDP, 5Ah) The Serial Flash Discoverable Parameters (SFDP) standard provides a consistent method of describing the functions and features of serial Flash devices in a standard set of internal parameter tables. These parameters can be interrogated by host system software to enable adjustments needed to accommodate divergent features from multiple vendors. For more details please refer to the JEDEC Standard JESD216 (Serial Flash Discoverable Parameters). The sequence of issuing RDSFDP instruction in SPI mode is: CE# goes low  Send RDSFDP instruction (5Ah)  Send 3 address bytes on SI pin  8 dummy cycles on SI pin  Read SFDP code on SO  End RDSFDP operation by driving CE# high at any time during data out. Refer to ISSI’s Application note for SFDP table. The data at the addresses that are not specified in SFDP table are undefined. RDSFDP Sequence is not supported in QPI mode. Figure 8.76 RDSFDP (Read SFDP) Sequence CE # Mode 3 0 1 ... 7 8 9 ... 31 32 33 ... 39 40 41 ... 47 ... SCK Mode 0 SI Instruction = 5Ah 3 Byte Address Dummy Cycles tV SO Data Out 8.36 NO OPERATION (NOP, 00h) The No Operation command solely cancels a Reset Enable command and has no impact on any other commands. It is available in both SPI and QPI modes. To execute a NOP, the host drives CE# low, sends the NOP command cycle (00h), then drives CE# high. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 116 IS25LP512M IS25WP512M 8.37 SOFTWARE RESET (RESET-ENABLE (RSTEN, 66h) AND RESET (RST, 99h)) AND HARDWARE RESET The Software Reset operation is used as a system reset that puts the device in normal operating mode. During the Reset operation, the value of volatile registers will default back to the value in the corresponding non-volatile register. However, the volatile FREEZE bit and the volatile PPB Lock bit in the PPB Lock Register are not changed by Software Reset. In all other respects, Software Reset is the same as Hardware Reset. This operation consists of two commands: Reset-Enable (RSTEN) and Reset (RST). The operation requires the Reset-Enable command followed by the Reset command. Any command other than the Reset command after the Reset-Enable command will disable the Reset-Enable. Execute the CE# pin low  sends the Reset-Enable command (66h), and drives CE# high. Next, the host drives CE# low again, sends the Reset command (99h), and pulls CE# high. Only if the RESET# pin is enabled, Hardware Reset function is available. For the device with HOLD#/RESET#, the RESET# pin will be solely applicable in SPI mode and when the QE bit = “0”. For the device with dedicated RESET# (Dedicated RESET# Disable bit is “0” in Function Register), the RESET# pin is always applicable regardless of the QE bit value in Status Register and HOLD#/RESET# selection bit (P7) in Read Register in SPI/QPI mode. In order to activate Hardware Reset, the RESET# pin (or ball) must be driven low for a minimum period of t RESET (100ns). Drive RESET# low for a minimum period of tRESET will interrupt any on-going internal and external operations, release the device from deep power down mode1, disable all input signals, force the output pin enter a state of high impedance, and reset all the read parameters. The required wait time after activating a HW Reset before the device will accept another instruction is tHWRST of 35us. The Software/Hardware Reset during an active Program or Erase operation aborts the operation, which can result in corrupting or losing the data of the targeted address range. Depending on the prior operation, the reset timing may vary. Recovery from a Write operation will require more latency than recovery from other operations. Note1: The Status and Function Registers remain unaffected. Figure 8.77 Software Reset Enable and Software Reset Sequence (RSTEN, 66h + RST, 99h) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 SCK Mode 0 SI Instruction = 66h Instruction = 99h High Impedance SO Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 117 14 15 IS25LP512M IS25WP512M Figure 8.78 Software Reset Enable and Software Reset Sequence In QPI Mode (RSTEN, 66h + RST, 99h) CE# Mode 3 0 1 0 1 SCK Mode 0 IO[3:0] 99h 66h 8.38 SECURITY INFORMATION ROW The security Information Row is comprised of an additional 4 x 256 bytes of programmable information. The security bits can be reprogrammed by the user. Any program security instruction issued while an erase, program or write cycle is in progress is rejected without having any effect on the cycle that is in progress. Table 8.10 Information Row Valid Address Range Address Assignment IRL0 (Information Row Lock0) IRL1 IRL2 IRL3 A[23:16] 00h 00h 00h 00h A[15:8] 00h 10h 20h 30h A[7:0] Byte address Byte address Byte address Byte address Bit 7~4 of the Function Register is used to permanently lock the programmable memory array. When Function Register bit IRLx = “0”, the 256 bytes of the programmable memory array can be programmed. When Function Register bit IRLx = “1”, the 256 bytes of the programmable memory array function as read only. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 118 IS25LP512M IS25WP512M 8.39 INFORMATION ROW ERASE OPERATION (IRER, 64h) Information Row Erase (IRER) instruction erases the data in the Information Row x (x: 0~3) array. Prior to the operation, the Write Enable Latch (WEL) must be set via a Write Enable (WREN) instruction. The WEL bit is automatically reset after the completion of the operation. The sequence of IRER operation: Pull CE# low to select the device  Send IRER instruction code  Send three address bytes  Pull CE# high. CE# should remain low during the entire instruction sequence. Once CE# is pulled high, Erase operation will begin immediately. The internal control logic automatically handles the erase voltage and timing. Figure 8.79 IRER (Information Row Erase) Sequence CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 ... 28 29 30 31 1 0 SCK Mode 0 3-byte Address SI SO Instruction = 64h 23 22 21 ... 3 2 High Impedance Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 119 IS25LP512M IS25WP512M 8.40 INFORMATION ROW PROGRAM OPERATION (IRP, 62h) The Information Row Program (IRP) instruction allows up to 256 bytes of data to be programmed into the memory in a single operation. Before the execution of IRP instruction, the Write Enable Latch (WEL) must be enabled through a Write Enable (WREN) instruction. The IRP instruction code, three address bytes and program data (1 to 256 bytes) should be sequentially input. Three address bytes has to be input as specified in the Table 8.10 Information Row Valid Address Range. Program operation will start once the CE# goes high, otherwise the IRP instruction will not be executed. The internal control logic automatically handles the programming voltages and timing. The progress or completion of the program operation can be determined by reading the WIP bit. If the WIP bit is “1”, the program operation is still in progress. If WIP bit is “0”, the program operation has completed. If more than 256 bytes data are sent to a device, the address counter rolls over within the same page. The previously latched data are discarded and the last 256 bytes data are kept to be programmed into the page. The starting byte can be anywhere within the page. When the end of the page is reached, the address will wrap around to the beginning of the same page. If the data to be programmed are less than a full page, the data of all other bytes on the same page will remain unchanged. Note: A program operation can alter “1”s into “0”s, but an erase operation is required to change “0”s back to “1”s. A byte cannot be reprogrammed without first erasing the corresponding Information Row array which is one of IR0~3. Figure 8.80 IRP (Information Row Program) Sequence 1 ... 7 8 9 ... 31 32 33 ... 39 ... ... 2079 Mode 3 0 2072 CE # SCK Mode 0 SI SO 3-byte Address Instruction = 62h 23 22 ... Data In 1 0 7 6 ... Data In 256 0 ... 7 ... High Impedance Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 120 0 IS25LP512M IS25WP512M 8.41 INFORMATION ROW READ OPERATION (IRRD, 68h) The IRRD instruction is used to read memory data. The IRRD instruction code is followed by three address bytes (A23 - A0) and dummy cycles (configurable, default is 8 clocks), transmitted via the SI line, with each bit latched-in during the rising edge of SCK. Then the first data byte addressed is shifted out on the SO line, with each bit shifted out at a maximum frequency f CT, during the falling edge of SCK. The address is automatically incremented by one after each byte of data is shifted out. Once the address reaches the last address of each 256 byte Information Row, the next address will not be valid and the data of the address will be garbage data. It is recommended to repeat four times IRRD operation that reads 256 byte with a valid starting address of each Information Row in order to read all data in the 4 x 256 byte Information Row array. The IRRD instruction is terminated by driving CE# high (VIH). If an IRRD instruction is issued while an Erase, Program or Write cycle is in process (WIP=1) the instruction is ignored and will not have any effects on the current cycle The sequence of IRRD instruction is same as Fast Read except for the instruction code. IRRD QPI sequence is same as Fast Read QPI except for the instruction code. Refer to the Fast Read QPI operation. Figure 8.81 IRRD (Information Row Read) Sequence CE # Mode 3 0 1 ... 7 8 9 ... 31 32 33 ... 39 40 41 ... 47 ... SCK Mode 0 SI Instruction = 68h 3 Byte Address Dummy Cycles tV SO Data Out Note: Dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 121 IS25LP512M IS25WP512M 8.42 FAST READ DTR MODE OPERATION (FRDTR, 0Dh or 4FRDTR, 0Eh) The FRDTR/4FRDTR instruction is for doubling the data in and out. Signals are triggered on both rising and falling edge of clock. The address is latched on both rising and falling edge of SCK, and data of each bit shifts out on both rising and falling edge of SCK. The 2-bit address can be latched-in at one clock, and 2-bit data can be read out at one clock, which means one bit at the rising edge of clock, the other bit at the falling edge of clock. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte of data is shifted out, so the whole memory can be read out in a single FRDTR/4FRDTR instruction. The address counter rolls over to 0 when the highest address is reached.  0Dh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  0Dh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  0Eh is followed by a 4-byte address (A31-A0) The sequence of issuing FRDTR/4FRDTR instruction is: CE# goes low  Sending FRDTR/4FRDTR instruction code (1bit per clock)  3-byte or 4-byte address on SI (2-bit per clock) as above  8 dummy clocks (configurable, default is 8 clocks) on SI  Data out on SO (2-bit per clock)  End FRDTR/4FRDTR operation via driving CE# high at any time during data out. While a Program/Erase/Write Status Register cycle is in progress, FRDTR/4FRDTR instruction will be rejected without any effect on the current cycle. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 122 IS25LP512M IS25WP512M Figure 8.82 FRDTR Sequence (0Dh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 ... 19 20 21 SCK Mode 0 3-byte Address SI Instruction = 0Dh 23 22 21 20 19 18 17 ... 0 High Impedance SO CE # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ... SCK SI 8 Dummy Cycles tV Data Out 1 SO Data Out 2 Data Out ... 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 ... Note: Dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 123 IS25LP512M IS25WP512M Figure 8.83 FRDTR Sequence (0Dh [EXTADD=1] or 0Eh, 4-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 ... 27 28 29 SCK Mode 0 4-byte Address SI Instruction = 0Dh/0Eh 31 30 29 28 27 26 25 ... 0 High Impedance SO CE # 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ... SCK SI 8 Dummy Cycles tV Data Out 1 SO Data Out 2 Data Out ... 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 ... Note: Dummy cycles depends on Read Parameter setting. Detailed information in Table 6.11 Read Dummy Cycles. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 124 IS25LP512M IS25WP512M FAST READ DTR OPERATION IN QPI MODE (FRDTR, 0Dh or 4FRDTR, 0Eh) The FRDTR/4FRDTR instruction in QPI mode utilizes all four IO lines to input the instruction code so that only two clocks are required, while the FRDTR/4FRDTR instruction in SPI mode requires that the byte-long instruction code is shifted into the device only via IO0 (SI) line in eight clocks. In addition, subsequent address and data out are shifted in/out via all four IO lines unlike the FRDTR/4FRDTR instruction. Eventually this operation is same as the FRQDTR/4FRQDTR in QPI mode, but the only different thing is that AX mode is not available in the FRDTR/4FRDTR operation in QPI mode.  0Dh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  0Dh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  0Eh is followed by a 4-byte address (A31-A0) The sequence of issuing FRDTR/4FRDTR instruction in QPI mode is: CE# goes low  Sending FRDTR/4FRDTR QPI instruction (4-bit per clock)  24-bit or 32-bit address interleave on IO3, IO2, IO1 & IO0 (8-bit per clock) as above  6 dummy clocks (configurable, default is 6 clocks)  Data out interleave on IO3, IO2, IO1 & IO0 (8-bit per clock)  End FRDTR/4FRDTR operation in QPI mode by driving CE# high at any time during data out. If the FRDTR/4FRDTR instruction in QPI mode is issued while an Erase, Program or Write cycle is in process is in progress (WIP=1), the instruction will be rejected without any effect on the current cycle. Figure 8.84 FRDTR Sequence In QPI Mode (0Dh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 ... SCK Mode 0 IO0 IO1 IO2 IO3 Instruction = 0Dh 6 Dummy Cycles 3-byte Address tV Data Data Out Out 4 0 20 16 12 8 4 0 4 0 4 0 ... 5 1 21 17 13 9 5 1 5 1 5 1 ... 6 2 22 18 14 10 6 2 6 2 6 2 ... 7 3 23 19 15 11 7 3 7 3 7 3 ... Notes: 1. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 2. Sufficient dummy cycles are required to avoid I/O contention. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 125 IS25LP512M IS25WP512M Figure 8.85 FRDTR Sequence In QPI Mode (0Dh [EXTADD=1] or 0Eh, 4-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 ... SCK Mode 0 IO0 IO1 IO2 IO3 Instruction = 0Dh/0Eh 6 Dummy Cycles 4-byte Address tV Data Out 4 0 28 24 20 16 12 8 4 0 4 0 ... 5 1 29 25 21 17 13 9 5 1 5 1 ... 6 2 30 26 22 18 14 10 6 2 6 2 ... 7 3 31 27 23 19 15 11 7 3 7 3 ... Notes: 1. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 2. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 126 IS25LP512M IS25WP512M 8.43 FAST READ DUAL IO DTR MODE OPERATION (FRDDTR, BDh or 4FRDDTR, BEh) The FRDDTR/4FRDDTR instruction enables Double Transfer Rate throughput on dual I/O of the device in read mode. The address (interleave on dual I/O pins) is latched on both rising and falling edge of SCK, and the data (interleave on dual I/O pins) shift out on both rising and falling edge of SCK. The 4-bit address can be latched-in at one clock, and 4-bit data can be read out at one clock, which means two bits at the rising edge of clock, the other two bits at the falling edge of clock. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte of data is shifted out, so the whole memory can be read out with a single FRDDTR/4FRDDTR instruction. The address counter rolls over to 0 when the highest address is reached. Once writing FRDDTR/4FRDDTR instruction, the following address/dummy/data out will perform as 4-bit instead of previous 1bit.  BDh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  BDh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  BEh is followed by a 4-byte address (A31-A0) The sequence of issuing FRDDTR/4FRDDTR instruction is: CE# goes low  Sending FRDDTR/4FRDDTR instruction (1-bit per clock)  24-bit or 32-bit address interleave on IO1 & IO0 (4-bit per clock) as above  4 dummy clocks (configurable, default is 4 clocks) on IO1 & IO0  Data out interleave on IO1 & IO0 (4-bit per clock)  End FRDDTR/4FRDDTR operation via pulling CE# high at any time during data out (Please refer to Figures 8.86 and 8.87 for 2 x I/O Double Transfer Rate Read Mode Timing Waveform). If AXh (where X is don’t care) is input for the mode bits during dummy cycles, the device will enter AX read operation mode which enables subsequent FRDDTR/4FRDDTR execution skips command code. It saves cycles as described in Figures 8.88 and 8.89. When the code is different from AXh (where X is don’t care), the device exits the AX read operation. After finishing the read operation, device becomes ready to receive a new command. If the FRDDTR/4FRDDTR instruction is issued while an Erase, Program or Write cycle is in process is in progress (WIP=1), the instruction will be rejected without any effect on the current cycle. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 127 IS25LP512M IS25WP512M Figure 8.86 FRDDTR Sequence (BDh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 ... 13 14 SCK Mode 0 3-byte Address IO0 Instruction = BDh 22 20 18 16 14 12 10 4 Dummy Cycles ... 0 6 4 Mode Bits High Impedance IO1 23 21 19 17 15 13 11 ... 1 7 5 CE # 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ... 29 SCK tV IO0 2 0 Data Out Data Out Data Out Data Out Data Out Data Out 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 ... Mode Bits IO1 3 1 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 ... Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 128 IS25LP512M IS25WP512M Figure 8.87 FRDDTR Sequence (BDh [EXTADD=1] or BEh, 4-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 ... 17 18 SCK Mode 0 4-byte Address IO0 Instruction = BDh/BEh 30 28 26 24 22 20 18 4 Dummy Cycles ... 0 6 4 Mode Bits High Impedance IO1 31 29 27 25 23 21 19 ... 1 7 5 CE # 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ... 33 SCK tV IO0 2 0 Data Out Data Out Data Out Data Out Data Out Data Out 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 6 4 2 0 ... Mode Bits IO1 3 1 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 ... Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 129 IS25LP512M IS25WP512M Figure 8.88 FRDDTR AX Read Sequence (BDh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 ... 6 7 8 9 10 11 12 13 14 15 16 ... SCK Mode 0 4 Dummy Cycles tV 3-byte Address IO0 22 20 18 16 14 12 10 ... Data Out Data Out Data Out 6 4 2 0 6 4 2 0 6 4 2 0 ... 0 6 4 2 0 Mode Bits IO1 23 21 19 17 15 13 11 ... 7 5 3 1 7 5 3 1 7 5 3 1 ... 1 7 5 3 1 Notes: 1. If the mode bits=AXh (where X is don’t care), it will keep executing the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Figure 8.89 FRDDTR AX Read Sequence (BDh [EXTADD=1] or BEh, 4-byte address) CE # Mode 3 0 1 2 ... 8 9 10 11 12 13 14 15 16 17 18 ... SCK Mode 0 4 Dummy Cycles 4-byte Address IO0 30 28 26 24 22 20 18 ... 0 6 4 2 0 tV Data Out Data Out Data Out 6 4 2 0 6 4 2 0 6 4 2 0 ... Mode Bits IO1 31 29 27 25 23 21 19 ... 1 7 5 3 1 7 5 3 1 7 5 3 1 7 5 3 1 ... Notes: 1. If the mode bits=AXh (where X is don’t care), it will keep executing the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 130 IS25LP512M IS25WP512M 8.44 FAST READ QUAD IO DTR MODE OPERATION IN SPI MODE (FRQDTR, EDh or 4FRQDTR, EEh) The FRQDTR/4FRQDTR instruction enables Double Transfer Rate throughput on quad I/O of the device in read mode. A Quad Enable (QE) bit of Status Register must be set to "1" before sending the Fast Read Quad I/O DTR instruction. The address (interleave on 4 I/O pins) is latched on both rising and falling edge of SCK, and data (interleave on 4 I/O pins) shift out on both rising and falling edge of SCK. The 8-bit address can be latched-in at one clock, and 8bit data can be read out at one clock, which means four bits at the rising edge of clock, the other four bits at the falling edge of clock. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out with a single FRQDTR/4FRQDTR instruction. The address counter rolls over to 0 when the highest address is reached. Once writing FRQDTR/4FRQDTR instruction, the following address/dummy/data out will perform as 8-bit instead of previous 1-bit.  EDh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  EDh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  EEh is followed by a 4-byte address (A31-A0) The sequence of issuing FRQDTR/4FRQDTR instruction is: CE# goes low  Sending FRQDTR/4FRQDTR instruction (1-bit per clock)  24-bit or 32-bit address interleave on IO3, IO2, IO1 & IO0 (8-bit per clock) as above  6 dummy clocks (configurable, default is 6 clocks)  Data out interleave on IO3, IO2, IO1 & IO0 (8-bit per clock)  End FRQDTR/4FRQDTR operation by driving CE# high at any time during data out. If AXh (where X is don’t care) is input for the mode bits during dummy cycles, the device will enter AX read operation mode which enables subsequent FRQDTR/4FRQDTR execution skips command code. It saves cycles as described in Figures 8.92 and 8.93. When the code is different from AXh (where X is don’t care), the device exits the AX read operation. After finishing the read operation, device becomes ready to receive a new command. If the FRQDTR/4FRQDTR instruction is issued while an Erase, Program or Write cycle is in process is in progress (WIP=1), the instruction will be rejected without any effect on the current cycle. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 131 IS25LP512M IS25WP512M Figure 8.90 FRQDTR Sequence In SPI Mode (EDh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 11 12 SCK Mode 0 3-byte Address IO0 Instruction = EDh 6 Dummy Cycles 20 16 12 8 4 0 4 0 High Impedance IO1 21 17 13 9 5 1 5 1 IO2 22 18 14 10 6 2 6 2 IO3 23 19 15 11 7 3 7 3 Mode Bits CE # 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ... SCK Data Data Data Data Data Data Data Data Data Data tV Out Out Out Out Out Out Out Out Out Out IO0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 ... IO1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 ... IO2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 ... IO3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 ... Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 132 IS25LP512M IS25WP512M Figure 8.91 FRQDTR Sequence In SPI Mode (EDh [EXTADD=1] or EEh, 4-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 11 12 13 SCK Mode 0 4-byte Address IO0 Instruction = EDh/EEh 6 Dummy Cycles 28 24 20 16 12 8 4 0 4 0 High Impedance IO1 29 25 21 17 13 9 5 1 5 1 IO2 30 26 22 18 14 10 6 2 6 2 IO3 31 27 23 19 15 11 7 3 7 3 Mode Bits CE # 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ... SCK Data Data Data Data Data Data Data Data Data Data tV Out Out Out Out Out Out Out Out Out Out IO0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 ... IO1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 ... IO2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 ... IO3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 ... Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 133 IS25LP512M IS25WP512M Figure 8.92 FRQDTR AX Read Sequence (EDh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 ... SCK Mode 0 6 Dummy Cycles 3-byte Address IO0 IO1 IO2 IO3 Data Data Data Data tV Out Out Out Out 20 16 12 8 4 0 4 0 4 0 4 0 4 0 4 0 ... 21 17 13 9 5 1 5 1 5 1 5 1 5 1 5 1 ... 22 18 14 10 6 2 6 2 6 2 6 2 6 2 6 2 ... 23 19 15 11 7 3 7 3 7 3 7 3 7 3 7 3 ... Mode Bits Notes: 1. If the mode bits=AXh (where X is don’t care), it will keep executing the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 134 IS25LP512M IS25WP512M Figure 8.93 FRQDTR AX Read Sequence (EDh [EXTADD=1] or EEh, 4-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... SCK Mode 0 6 Dummy Cycles 4-byte Address IO0 IO1 IO2 IO3 Data Data Data Data tV Out Out Out Out 28 24 20 16 12 8 4 0 4 0 4 0 4 0 4 0 4 0 ... 29 25 21 17 13 9 5 1 5 1 5 1 5 1 5 1 5 1 ... 30 26 22 18 14 10 6 2 6 2 6 2 6 2 6 2 6 2 ... 31 27 23 19 15 11 7 3 7 3 7 3 7 3 7 3 7 3 ... Mode Bits Notes: 1. If the mode bits=AXh (where X is don’t care), it will keep executing the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 135 IS25LP512M IS25WP512M FAST READ QUAD IO DTR MODE OPERATION IN QPI MODE (FRQDTR, EDh OR 4FRQDTR, EEh) The FRQDTR/4FRQDTR instruction in QPI mode utilizes all four IO lines to input the instruction code so that only two clocks are required, while the FRQDTR/4FRQDTR instruction in SPI mode requires that the byte-long instruction code is shifted into the device only via IO0 line in eight clocks. As a result, 6 command cycles will be reduced by the FRQDTR/4FRQDTR instruction in QPI mode. In addition, subsequent address and data out are shifted in/out via all four IO lines like the FRQDTR/4FRQDTR instruction. In fact, except for the command cycle, the FRQDTR/4FRQDTR operation in QPI mode is exactly same as the FRQDTR/4FRQDTR operation in SPI mode. It is not required to set QE bit to “1”.before Fast Read Quad I/O DTR instruction in QPI mode.  EDh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  EDh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  EEh is followed by a 4-byte address (A31-A0) The sequence of issuing FRQDTR/4FRQDTR instruction is: CE# goes low  Sending FRQDTR/4FRQDTR instruction (4-bit per clock)  24-bit or 32-bit address interleave on IO3, IO2, IO1 & IO0 (8-bit per clock) as above  6 dummy clocks (configurable, default is 6 clocks)  Data out interleave on IO3, IO2, IO1 & IO0 (8-bit per clock)  End FRQDTR/4FRQDTR operation by driving CE# high at any time during data out. If AXh (where X is don’t care) is input for the mode bits during dummy cycles, the device will enter AX read operation mode which enables subsequent FRQDTR/4FRQDTR in QPI mode execution skips command code. It saves cycles as described in Figures 8.92 and 8.93. When the code is different from AXh (where X is don’t care), the device exits the AX read operation. After finishing the read operation, device becomes ready to receive a new command. If the FRQDTR/4FRQDTR instruction in QPI mode is issued while an Erase, Program or Write cycle is in process is in progress (WIP=1), the instruction will be rejected without any effect on the current cycle. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 136 IS25LP512M IS25WP512M Figure 8.94 FRQDTR Sequence In QPI Mode (EDh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 ... SCK Mode 0 IO0 IO1 IO2 IO3 Instruction = EDh 6 Dummy Cycles 3-byte Address tV Data Data Out Out 4 0 20 16 12 8 4 0 4 0 4 0 4 0 ... 5 1 21 17 13 9 5 1 5 1 5 1 5 1 ... 6 2 22 18 14 10 6 2 6 2 6 2 6 2 ... 7 3 23 19 15 11 7 3 7 3 7 3 7 3 ... Mode Bits Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 137 IS25LP512M IS25WP512M Figure 8.95 FRQDTR Sequence In QPI Mode (EDh [EXTADD=1] or EEh, 4-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 ... SCK Mode 0 IO0 IO1 IO2 IO3 Instruction = EDh/EEh 6 Dummy Cycles 4-byte Address tV Data Out 4 0 28 24 20 16 12 8 4 0 4 0 4 0 ... 5 1 29 25 21 17 13 9 5 1 5 1 5 1 ... 6 2 30 26 22 18 14 10 6 2 6 2 6 2 ... 7 3 31 27 23 19 15 11 7 3 7 3 7 3 ... Mode Bits Notes: 1. If the mode bits=AXh (where X is don’t care), it can execute the AX read mode (without command). When the mode bits are different from AXh, the device exits the AX read operation. 2. Number of dummy cycles depends on clock speed. Detailed information in Table 6.11 Read Dummy Cycles. 3. Sufficient dummy cycles are required to avoid I/O contention. If the number of dummy cycles and AX bits cycles are same, then X should be Hi-Z. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 138 IS25LP512M IS25WP512M 8.45 SECTOR LOCK/UNLOCK FUNCTIONS SECTOR UNLOCK OPERATION (SECUNLOCK, 26h or 4SECUNLOCK, 25h) The Sector Unlock command allows the user to select a specific sector to allow program and erase operations. This instruction is effective when the blocks are designated as write-protected through the BP0-BP3 bits in the Status Register and TBS bit in the Function Register. Only one sector can be enabled at any time. To enable a different sector, a previously enabled sector must be disabled by executing a Sector Lock command.  26h (EXTADD=0) is followed by a 3-byte address (A23-A0) or  26h (EXTADD=1) is followed by a 4-byte address (A31-A0) or  25h is followed by a 4-byte address (A31-A0) The instruction code is followed by a 24-bit or 32-bit address specifying the target sector as above, but A0 through A11 are not decoded. The remaining sectors within the same block remain as read-only. Figure 8.96 Sector Unlock Sequence In SPI Mode (26h [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 ... 28 29 30 31 1 0 SCK Mode 0 3-byte Address SI Instruction = 26h 23 22 21 ... 3 2 High Impedance SO Figure 8.97 Sector Unlock Sequence In SPI Mode (26h [EXTADD=1] or 25h, 4-byte address) CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 ... 36 37 38 39 1 0 SCK Mode 0 4-byte Address SI SO Instruction = 26h/25h 31 30 29 ... 3 2 High Impedance Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 139 IS25LP512M IS25WP512M Figure 8.98 Sector Unlock Sequence In QPI Mode (26h [EXTADD=0], 3-byte address) CE# Mode 3 0 1 2 3 4 6 7 7:4 3:0 5 SCK Mode 0 Instruction IO[3:0] 3-byte Address 23:20 19:16 15:12 11:8 26h Figure 8.99 Sector Unlock Sequence In QPI Mode (26h [EXTADD=1] or 25h, 4-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 7:4 3:0 SCK Mode 0 IO[3:0] 4-byte Address 26h/25h 31:28 27:24 23:20 19:16 15:12 11:8 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 140 IS25LP512M IS25WP512M SECTOR LOCK OPERATION (SECLOCK, 24h) The Sector Lock command relocks a sector that was previously unlocked by the Sector Unlock command. The instruction code does not require an address to be specified, as only one sector can be enabled at a time. The remaining sectors within the same block remain in read-only mode. Figure 8.100 Sector Lock Sequence In SPI mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = 24h SI High Impedance SO Figure 8.101 Sector Lock Sequence In QPI mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 24h 141 IS25LP512M IS25WP512M 8.46 READ BANK ADDRESS REGISTER OPERATION (RDBR: 16h/C8h) The Read Bank Address Register (RDBR) instruction allows the Bank Address Register contents to be read. RDBR is used to read only a volatile Bank Address Register. The instruction code is first shifted in. Then the 8-bit Bank Register is shifted out. It is possible to read the Bank Address Register continuously by providing multiples of eight bits. Data is shifted in from SI and data is shifted out from SO in SPI sequence whereas data in and out is via four pins (IO0-IO3) in QPI sequence. Figure 8.102 Read Bank Address Register Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK Mode 0 SI Instruction = 16h/C8h tV SO Data Out 7 6 5 4 3 2 1 Figure 8.103 Read Bank Address Register Sequence In QPI Mode CE# Mode 3 0 1 2 3 SCK Mode 0 tV IO[3:0] 16h/C8h 7:4 3:0 Data Out Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 142 0 IS25LP512M IS25WP512M 8.47 WRITE BANK ADDRESS REGISTER OPERATION (WRBRNV: 18h, WRBRV: 17h/C5h) The Write Bank Address Register (WRBRNV and WRBRV) instruction is used to write address bits above A23, into the Bank Address Register (BAR). WRBRNV is used to write the non-volatile Bank Address Register and WRBRV is used to write the volatile Bank Address Register. The instruction is also used to write the Extended Address Control bit (EXTADD) that is also in BAR [7]. BAR provides the high order addresses needed by devices having more than 128Mbits (16Mbytes), when using 3-byte address commands without extended addressing enabled (BAR [7] EXTADD = 0). To write non-volatile Bank Address Register, a standard Write Enable (06h) instruction must previously have been executed for the device to accept WRBRNV(18h) instruction (Status Register bit WEL must equal “1”). To write volatile Bank Address Register, C5h or 17h command can be used. When using C5h instruction, a standard Write Enable (06h) instruction must previously have been executed for the device to accept C5h instruction (Status Register bit WEL must equal “1”). But 17h instruction does not require a standard Write Enable (06h) operation. (Status Register bit WEL remains “0”). The WRBRNV/WRBRV instructions are followed by the data byte. The Bank Address Register is one data byte in length. The Write In Progress (WIP) bit is “1” during WRBRNV/WRBRV operation, and is “0” when it is completed. Any bank address bit reserved for the future should always be written as “0”. Data is shifted in from SI and in SPI whereas data is shifted in via four pins (IO0-IO3) in QPI. Bit 7 (EXTADD) of volatile Bank Address Register is also writable with EN4B (B7h)/EX4B (29h) instruction. But B7h/29h instruction does not require a standard Write Enable (06h) (Status Register bit WEL remains 0). Note: When WRBRNV is executed, the volatile Bank Address Register is set as well as the non-volatile Bank Address Register. Figure 8.104 Write Bank Address Register Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 1 0 SCK Mode 0 Data In SI SO Instruction = 18h or 17h/C5h 7 6 5 4 3 High Impedence Figure 8.105 Write Bank Address Register Sequence In QPI Mode CE# Mode 3 0 1 2 3 7:4 3:0 SCK Mode 0 IO[3:0] 18h or 17h/C5h Data In Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 143 IS25LP512M IS25WP512M 8.48 ENTER 4-BYTE ADDRESS MODE OPERATION (EN4B, B7h) The Enter 4-byte Address Mode instruction allows 32bit address (A31-A0) to be used to access the memory array beyond 128Mb. To execute EN4B operation, the host drives CE# low, sends the instruction code and then drives CE# high. The Exit 4-byte Address Mode instruction can be used to exit the 4-byte address mode. A Write Enable (WREN, 06h) command is not required prior to EN4B (B7h) command. Note: The EN4B instruction will set the Bit 7 (EXTADD) of the volatile Bank Address Register to “1”, but will not change the non-volatile Bank Address Register. Figure 8.106 Enter 4-byte Address Mode Sequence In SPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = B7h SI High Impedance SO Figure 8.107 Enter 4-byte Address Mode Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 B7h 144 IS25LP512M IS25WP512M 8.49 EXIT 4-BYTE ADDRESS MODE OPERATION (EX4B, 29h) In order to be backward compatible, the Exit 4-byte Address Mode instruction allows 24bit address (A23-A0) to be used to access the memory array up to 128Mb. The Bank Address Register must be used to access the memory array beyond 128Mb. To execute EX4B operation, the host drives CE# low, sends the instruction code and then drives CE# high. A Write Enable (WREN, 06h) command is not required prior to EX4B (29h) command. Note: The EX4B instruction will reset the Bit 7 (EXTADD) of the volatile Bank Address Register to “0” ”, but will not change the non-volatile Bank Address Register. Figure 8.108 Exit 4-byte Address Mode Sequence In SPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = 29h SI High Impedance SO Figure 8.109 Exit 4-byte Address Mode Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 29h 145 IS25LP512M IS25WP512M 8.50 READ DYB OPERATION (RDDYB, FAh or 4RDDYB, E0h) FAh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  FAh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  E0h is followed by a 4-byte address (A31-A0) The instruction is used to read Dynamic Protection Bit (DYB) status of the given sector/block. The instruction code is entered first, followed by the 24-bit or 32-bit address selecting location zero within the desired sector/block as above. Then the 8-bit DYB access register contents are shifted out. Each bit (SPI) is shifted out at the SCK frequency by the falling edge of the SCK signal. It is possible to read the same DYB access register continuously by providing multiples of eight bits. The address of the DYB register does not increment so this is not a means to read the entire DYB array. Each location must be read with a separate Read DYB instruction. Note: Data must be either 00h (protected) or FFh (unprotected). Figure 8.110 Read DYB Sequence In SPI Mode (FAh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 ... 7 8 9 ... 31 32 33 34 35 36 37 38 39 SCK Mode 0 SI Instruction = FAh 3-byte Address tV SO Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 7 6 5 4 3 2 1 146 0 IS25LP512M IS25WP512M Figure 8.111 Read DYB Sequence In SPI Mode(FAh [EXTADD=1] or E0h, 4-byte address) CE # Mode 3 0 1 ... 7 8 9 ... 39 40 41 42 43 44 45 46 47 SCK Mode 0 SI Instruction = FAh/E0h 4-byte Address tV SO Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 7 6 5 4 3 2 1 147 0 IS25LP512M IS25WP512M 8.51 WRITE DYB OPERATION (WRDYB, FBh or 4WRDYB, E1h) Before the WRDYB/4WRDYB command can be accepted by the device, a standard Write Enable (06h) instruction must previously have been executed for the device to accept Write DYB instruction (Status Register bit WEL must equal 1).  FBh (EXTADD=0) is followed by a 3-byte address (A23-A0) or  FBh (EXTADD=1) is followed by a 4-byte address (A31-A0) or  E1h is followed by a 4-byte address (A31-A0) The WRDYB/4WRDYB command is entered by driving CE# low, followed by the instruction code, the 24-bit or 32bit address selecting location zero within the desired sector/block as above, then the data byte. The DYB Access Register is one data byte in length. CE# must be driven high after the eighth bit of data has been latched in. As soon as CE# is driven high, the WRDYB/4WRDYB operation is initiated. Note: Data must be either 00h (protected) or FFh (unprotected). Figure 8.112 Write DYB Sequence In SPI Mode (FBh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 ... 7 8 9 ... 31 32 33 34 35 36 37 38 39 2 1 0 SCK Mode 0 Data In SI SO Instruction = FBh 3-byte Address 7 6 5 4 3 High Impedence Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 148 IS25LP512M IS25WP512M Figure 8.113 Write DYB Sequence In SPI Mode (FBh [EXTADD=1] or E1h, 4-byte address) CE # Mode 3 0 1 ... 7 8 9 39 ... 40 41 42 43 44 45 46 47 2 1 0 SCK Mode 0 Data In SI Instruction = FBh/E1h 4-byte Address 7 6 5 4 3 High Impedence SO Figure 8.114 Write DYB Sequence In QPI Mode (FBh [EXTADD=0], 3-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 SCK Mode 0 3-byte Address FBh IO[3:0] Data In Figure 8.115 Write DYB Sequence In QPI Mode (FBh [EXTADD=1] or E1h, 4-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 SCK Mode 0 IO[3:0] FBh/E1h Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 4-byte Address Data In 149 IS25LP512M IS25WP512M 8.52 READ PPB OPERATION (RDPPB, FCh or 4RDPPB, E2h) FCh (EXTADD=0) is followed by a 3-byte address (A23-A0) or FCh (EXTADD=1) is followed by a 4-byte address (A31-A0) or E2h is followed by a 4-byte address (A31-A0) The instruction code is shifted into SI by the rising edges of the SCK signal, followed by the 24-bit or 32-bit address selecting location zero within the desired sector/block as above. Then the 8-bit PPB Access Register contents are shifted out on SO. The RDPPB/4RDPPB is supporting only SPI, not supporting QPI. It is possible to read the same PPB Access Register continuously by providing multiples of eight bits. The address of the PPB Access Register does not increment so this is not a means to read the entire PPB array. Each location must be read with a separate Read PPB command. Note: Data must be either 00h (protected) or FFh (unprotected). Figure 8.116 Read PPB Sequence (FCh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 ... 7 8 9 ... 31 32 33 34 35 36 37 38 39 SCK Mode 0 SI Instruction = FCh 3-byte Address tV SO 7 6 5 2 3 4 1 0 Figure 8.117 Read PPB Sequence (FCh [EXTADD=1] or E2h, 4-byte address) CE # Mode 3 0 1 ... 7 8 9 ... 39 40 41 42 43 44 45 46 47 SCK Mode 0 SI Instruction = FCh/E2h 4-byte Address tV SO Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 7 6 5 4 3 2 1 150 0 IS25LP512M IS25WP512M 8.53 PROGRAM PPB OPERATION (PGPPB, FDh or 4PGPPB, E3h) Before the Program PPB (PGPPB/4PGPPB) command is sent, a Write Enable (WREN) command must be issued. After the WREN command has been decoded, the device will set the Write Enable Latch (WEL) in the Status Register. FDh (EXTADD=0) is followed by a 3-byte address (A23-A0) or FDh (EXTADD=1) is followed by a 4-byte address (A31-A0) or E3h is followed by a 4-byte address (A31-A0) The PGPPB/4PGPPB command is entered by driving CE# low, followed by the instruction code, followed by the 24-bit or 32-bit address selecting location zero within the desired sector/block as above. The PGPPB/4PGPPB command affects the WIP bit in the same manner as any other programming operation. CE# must be driven high after the last bit of address has been latched in. As soon as CE# is driven high, the PGPPB/4PGPPB operation is initiated. While the PGPPB/4PGPPB operation is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The WIP bit is “1” during the PGPPB/4PGPPB operation, and is “0” when it is completed. When the PGPPB/4PGPPB operation is completed, the WEL is set to “0”. Note: Data must be either 00h (protected) or FFh (unprotected). Figure 8.118 Program PPB Sequence In SPI Mode (FDh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 ... 7 8 9 ... 31 SCK Mode 0 SI Instruction = FDh 3-byte Address High Impedence SO Figure 8.119 Program PPB Sequence In SPI Mode (FDh [EXTADD=1] or E3h, 4-byte address) CE # Mode 3 0 1 ... 7 8 9 ... 39 SCK Mode 0 SI Instruction = FDh/E3h SO Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 4-byte Address High Impedence 151 IS25LP512M IS25WP512M Figure 8.120 Program PPB Sequence In QPI Mode (FDh [EXTADD=0], 3-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 3-byte Address FDh IO[3:0] Figure 8.121 Program PPB Sequence In QPI Mode (FDh [EXTADD=1] or E3h, 4-byte address) CE# Mode 3 0 1 2 3 4 5 6 7 8 9 SCK Mode 0 IO[3:0] FDh/E3h Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 4-byte Address 152 IS25LP512M IS25WP512M 8.54 ERASE PPB OPERATION (ERPPB, E4h) The Erase PPB (ERPPB) command sets all PPB bits to “1”. Before the ERPPB command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The instruction code is shifted in by the rising edges of the SCK signal. CE# must be driven high after the eighth bit of the instruction byte has been latched in. This will initiate the beginning of internal erase cycle, which involves the pre-programming and erase of the entire PPB memory array. Without CE# being driven high after the eighth bit of the instruction, the PPB erase operation will not be executed. With the internal erase cycle in progress, the user can read the value of the Write In Progress (WIP) bit to check if the operation has been completed. The WIP bit will indicate “1” when the erase cycle is in progress and “0” when the erase cycle has been completed. When the ERPPB operation is completed, the WEL is set to “0”. Erase suspend is not allowed during PPB Erase. Figure 8.122 Erase PPB Sequence In SPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = E4h SI High Impedance SO Figure 8.123 Erase PPB Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 E4h 153 IS25LP512M IS25WP512M 8.55 READ ASP OPERATION (RDASP, 2Bh) The RDASP instruction code is shifted in by the rising edge of the SCK signal. Then the 16-bit ASP register contents is shifted out, least significant byte first, most significant bit of each byte first. Each bit is shifted out at the SCK frequency by the falling edge of the SCK signal. It is possible to read the ASP register continuously by providing multiples of 16 bits. Figure 8.124 Read ASP Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 8 7 9 ... 15 16 17 ... 23 SCK Mode 0 SI Instruction = 2Bh 1st byte Data Out tV SO Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 7 6 ... 2nd byte Data Out 0 15 14 ... 154 8 IS25LP512M IS25WP512M 8.56 PROGRAM ASP OPERATION (PGASP, 2Fh) Before the Program ASP (PGASP) command can be accepted by the device, a Write Enable (WREN) command must be issued. After the WREN command has been decoded, the device will set the Write Enable Latch (WEL) in the Status Register to enable any write operations. The PGASP command is entered by driving CE# low, followed by the instruction code and two data bytes, least significant byte first, most significant bit of each byte first. The ASP Register is two data bytes in length. The PGASP command affects the Write In Progress (WIP) bit in the same manner as any other programming operation. CE# input must be driven high after the sixteenth bit of data has been latched in. If not, the PGASP command is not executed. As soon as CE# is driven high, the PGASP operation is initiated. While the PGASP operation is in progress, the Status Register may be read to check the value of WIP bit. The WIP bit is “1” during the PGASP operation, and is “0” when it is completed. When the PGASP operation is completed, the WEL is set to “0”. Figure 8.125 Program ASP Sequence In SPI Mode CE # Mode 3 0 1 ... 7 8 9 ... 13 14 15 16 17 ... 21 22 23 9 8 SCK Mode 0 SI 1st byte Data In Instruction = 2Fh 7 6 ... 2 2nd byte Data In 1 0 15 3 4 5 14 ... 10 High Impedence SO Figure 8.126 Program ASP Sequence In QPI Mode CE# Mode 3 0 1 2 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 2Fh 1st byte Data In 2nd byte Data In 155 IS25LP512M IS25WP512M 8.57 READ PPB LOCK BIT OPERATION (RDPLB, A7h) The Read PPB Lock Bit (RDPLB) command allows the PPB Lock Register contents to be read. It is possible to read the PPB Lock Register continuously by providing multiples of eight bits. The PPB Lock Register contents may only be read when the device is in standby state with no other operation in progress. It is recommended to check the Write In Progress (WIP) bit before issuing a new command to the device. RDPLB operation is valid only at SPI mode only. Figure 8.127 Read PPB Lock Bit Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK Mode 0 SI Instruction = A7h tV SO Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Data Out 7 6 5 4 3 2 1 156 0 IS25LP512M IS25WP512M 8.58 WRITE PPB LOCK BIT OPERATION (WRPLB, A6h) The Write PPB Lock Bit (WRPLB) command clears the PPB Lock (PPBLK) bit to zero. Before the WRPLB command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The WRPLB command is entered by driving CE# low, followed by the instruction code. CE# must be driven high after the eighth bit of instruction has been latched in. If not, the WRPLB command is not executed. As soon as CE# is driven high, the WRPLB operation is initiated. While the WRPLB operation is in progress, the Status Register may still be read to check the value of the Write In Progress (WIP) bit. The WIP bit is “1” during the WRPLB operation, and is “0” when it is completed. When the WRPLB operation is completed, the WEL is set to “0”. Figure 8.128 Write PPB Lock Bit Sequence In SPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = A6h SI High Impedance SO Figure 8.129 Write PPB Lock Bit Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 A6h 157 IS25LP512M IS25WP512M 8.59 SET FREEZE BIT OPERATION (SFRZ, 91h) The Set FREEZE Bit (SFRZ) command sets FREEZE (PPB Lock Register bit7) to one. Please refer to the section 6.6.3 PPB Lock Register for more detail. Before the SFRZ command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The SFRZ command is entered by driving CE# low, followed by the instruction code. CE# must be driven high after the eighth bit of instruction has been latched in. If not, the SFRZ command is not executed. As soon as CE# is driven high, the SFRZ operation is initiated. While the SFRZ operation is in progress, the Status Register may still be read to check the value of the Write In Progress (WIP) bit. The WIP bit is “1” during the SFRZ operation, and is “0” when it is completed. When the SFRZ operation is completed, the WEL is set to “0”. Figure 8.130 Set FREEZE Bit Sequence In SPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = 91h SI High Impedance SO Figure 8.131 Set FREEZE Bit Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 91h 158 IS25LP512M IS25WP512M 8.60 READ PASSWORD OPERATION (RDPWD, E7h) The correct password value may be read only after it is programmed and before the Password Mode has been selected by programming the Password Protection Mode bit to “0” in the ASP Register (ASP[2]). After the Password Protection Mode is selected the RDPWD command is ignored. The RDPWD command is shifted in. Then the 64-bit Password is shifted out, least significant byte first, most significant bit of each byte first. Each bit is shifted out at the SCK frequency by the falling edge of the SCK signal. It is possible to read the Password continuously by providing multiples of 64bits. RDPWD operation is valid only at SPI mode only. Figure 8.132 Read password Sequence In SPI Mode CE # Mode 3 0 1 ... 7 8 9 15 ... 16 17 ... 23 ... 64 65 71 ... SCK Mode 0 SI Instruction = E7h 1st byte Data Out tV SO 7 Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 6 ... ... 2nd byte Data Out 0 15 14 ... 8 ... 8th byte Data Out 63 62 159 ... 56 IS25LP512M IS25WP512M 8.61 PROGRAM PASSWORD OPERATION (PGPWD, E8h) Before the Program Password (PGPWD) command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device which sets the Write Enable Latch (WEL) to enable the PGPWD operation. The password can only be programmed before the Password Mode is selected by programming the Password Protection Mode bit to “0” in the ASP Register (ASP[2]). After the Password Protection Mode is selected the PGPWD command is ignored. The PGPWD command is entered by driving CE# low, followed by the instruction code and the password data bytes, least significant byte first, most significant bit of each byte first. The password is 64bits in length. CE# must be driven high after the 64th bit of data has been latched. If not, the PGPWD command is not executed. As soon as CE# is driven high, the PGPWD operation is initiated. While the PGPWD operation is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The WIP bit is “1” during the PGPWD operation, and is “0” when it is completed. When the PGPWD operation is completed, the Write Enable Latch (WEL) is set to “0”. Figure 8.133 Program Password Sequence In SPI Mode CE # Mode 3 0 1 ... 7 8 9 15 ... 16 17 ... 23 ... 64 65 ... 71 SCK Mode 0 1st byte Data In SI Instruction = E8h 7 ... 6 ... 2nd byte Data In ... 14 15 0 ... 8 8th byte Data In 63 62 High Impedence SO Figure 8.134 Program Password Sequence In QPI Mode CE# Mode 3 0 1 2 3 5 ... 2nd byte Data In ... 4 16 17 SCK Mode 0 IO[3:0] E8h Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 1st byte Data In 8th byte Data In 160 ... 56 IS25LP512M IS25WP512M 8.62 UNLOCK PASSWORD OPERATION (UNPWD, E9h) The UNPWD command is entered by driving CE# low, followed by the instruction code and the password data bytes, least significant byte first, most significant bit of each byte first. The password is 64bits in length. CE# must be driven high after the 64th bit of data has been latched. If not, the UNPWD command is not executed. As soon as CE# is driven high, the UNPWD operation is initiated. While the UNPWD operation is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The WIP bit is “1” during the UNPWD operation, and is “0” when it is completed. If the UNPWD command supplied password does not match the hidden password in the Password Register, the UNPWD command is ignored. This returns the device to standby state, ready for a new command such as a retry of the UNPWD command. If the password does match, the PPB Lock bit is set to “1”. Figure 8.135 Unlock Password Sequence In SPI Mode CE # Mode 3 0 1 ... 7 8 9 15 ... 16 17 ... 23 ... 64 65 ... 71 SCK Mode 0 1st byte Data In SI Instruction = E9h 7 ... 6 ... 2nd byte Data In ... 14 15 0 ... 8 8th byte Data In 63 62 High Impedence SO Figure 8.136 Unlock Password Sequence In QPI Mode CE# Mode 3 0 1 2 3 5 ... 2nd byte Data In ... 4 16 17 SCK Mode 0 IO[3:0] E9h Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 1st byte Data In 8th byte Data In 161 ... 56 IS25LP512M IS25WP512M 8.63 GANG SECTOR/BLOCK LOCK OPERATION (GBLK, 7Eh) The Gang Sector/Block Lock (GBLK) instruction provides a quick method to set all DYB (Dynamic Protection Bit) bits to “0” at once. Before the GBLK (7Eh) command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The sequence of issuing GBLK instruction is: drive CE# low  send GBLK instruction code  drive CE# high. The instruction code will be shifted into the device on the rising edge of SCK. The GBLK command is accepted in both SPI and QPI mode. The CE# must go high exactly at the byte boundary, otherwise, the instruction will be ignored. While the GBLK operation is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The WIP bit is “1” during the GBLK operation, and is “0” when it is completed. Figure 8.137 Gang Sector/Block Lock Sequence In SPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = 7Eh SI High Impedance SO Figure 8.138 Gang Sector/Block Lock Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 7Eh 162 IS25LP512M IS25WP512M 8.64 GANG SECTOR/BLOCK UNLOCK OPERATION (GBUN, 98h) The Gang Sector/Block Unlock (GBUN) instruction provides a quick method to clear all DYB (Dynamic Protection Bit) bits to “1” at once. Before the GBUN (98h) command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The sequence of issuing GBUN instruction is: drive CE# low  send GBUN instruction code  drive CE# high. The instruction code will be shifted into the device on the rising edge of SCK. The GBUN command is accepted in both SPI and QPI mode. The CE# must go high exactly at the byte boundary, otherwise, the instruction will be ignored and not be executed. While the GBUN operation is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The WIP bit is “1” during the GBUN operation, and is “0” when it is completed. Figure 8.139 Gang Sector/Block Unlock Sequence In SPI Mode CE# Mode 3 0 1 2 3 4 5 6 7 SCK Mode 0 Instruction = 98h SI High Impedance SO Figure 8.140 Gang Sector/Block Unlock Sequence In QPI Mode CE# Mode 3 0 1 SCK Mode 0 IO[3:0] Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 98h 163 IS25LP512M IS25WP512M 8.65 DATA LEARNING PATTERN (DLP) The Data Learning Pattern is a preamble, and it can help host controller to determine the phase shift from SCK to data edges so that controller can capture data at the center of the data eye at high frequency DTR operation. DLP can be enabled or disabled by setting the bit EB4 of Extended Read register (DLPEN bit). When enabled, the device drives all IO bus during last 4 dummy cycles immediately before data is output in DTR operation. (No DLP operation in STR operation). The host must be sure to stop driving the IO bus at least 1 cycle prior to the time that the memory starts outputting the DLP during dummy cycles. That is why, when using DDR IO commands with DLP enabled, 5 or more dummy cycles must be selected. If there are mode bits for AX read operation, still more than 5 clock cycles are required for DLP operation between last mode bit and first read data. DLP operation is valid in DTR operation with valid dummy cycles in SPI mode and QPI mode with below command; FRDTR (Fast Read DTR) command in SPI and QPI mode. FRDDTR (Fast Read Dual IO DTR) command in SPI mode only FRQDTR (Fast Read Quad IO DTR) command in SPI and QPI mode Data Learning Pattern is programmable, and fixed length of 8-bit in DTR operation. For example, DLP 34h is programmed, then (0011 0100) data will start output from all IOs before data is output during 4 clock cycles. All IOs will output 0 at the first clock edge, subsequently, all IOs will output 0, the 3 rd will output 1, etc. The Data Learning Pattern (DLP) resides in an 8-bit Non-Volatile Data Learning Register (NVDLR) as well as an 8-bit Volatile Data Learning Register (VDLR). NVDLR can be programmed with Program NVDLR (PNVDLR 43h) command, and VDLR can be written by Write VDLR (WRVDLR 4Ah) command. Also DLP register value can be read out by Data Learning Pattern Read (RDDLP) command. All 3 commands (PNVDLR, WRVDLR, RDDLP) are valid in SPI mode and QPI mode. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 164 IS25LP512M IS25WP512M Figure 8.141 FRDTR Sequence with DLP In SPI Mode (0Dh [EXTADD=0], 3-byte address) CE# Mode3 0 1 2 3 4 5 6 7 8 9 10 ... 19 20 21 SCK Mode0 3- byte Address SI Instruction= 0Dh 23 22 21 20 19 18 17 ... 0 High Impedance SO CE# 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ... SCK 8 Dummy Cycles DLP Cycles SI tV tV Data Out1 SO Data Out 2 Data Out ... 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 ... Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 165 IS25LP512M IS25WP512M Figure 8.142 FRDTR Sequence with DLP In QPI Mode (0Dh [EXTADD=0], 3-byte address) CE # Mode 3 0 1 2 3 4 5 7 6 8 9 10 11 12 ... SCK Mode 0 6 Dummy Cycles Instruction = 0Dh IO0 IO1 IO2 IO3 DLP Cycles 3-byte Address tV Data Data tV Out Out 7 6 5 4 3 2 1 0 4 0 4 0 ... 4 0 20 16 12 8 4 0 5 1 21 17 13 9 5 1 7 6 5 4 3 2 1 0 5 1 5 1 ... 6 2 22 18 14 10 6 2 7 6 5 4 3 2 1 0 6 2 6 2 ... 7 3 23 19 15 11 7 3 7 6 5 4 3 2 1 0 7 3 7 3 ... Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 166 IS25LP512M IS25WP512M 8.66 PROGRAM NVDLR OPERATION (PNVDLR, 43h) Before the Program NVDLR (PNVDLR) command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device. After the Write Enable (WREN) command has been decoded successfully, the device will set the Write Enable Latch (WEL) to enable the PNVDLR operation. The PNVDLR command (43h) is entered by shifting the instruction and data byte on SI. CE# must be driven to the logic high state after the eighth (8 th) bit of data has been latched. If not, the PNVDLR command is not executed. As soon as CE# is driven to the logic high state, the self-timed PNVDLR operation is initiated. While the PNVDLR operation is in progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a 1 during the PNVDLR cycle, and is 0 when it is completed. The PNVDLR operation can report a program error in the P_ERR bit of the Extended Read Register. When the PNVDLR operation is completed, the Write Enable Latch (WEL) is set to 0 . Figure 8.143 PNVDLR Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 1 0 SCK Mode 0 SI SO Data In Instruction = 43h 7 6 5 1 2 3 7:4 3:0 4 3 High Impedence Figure 8.144 PNVDLR Sequence In QPI Mode CE# Mode 3 0 SCK Mode 0 IO[3:0] 43h Data In Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 167 IS25LP512M IS25WP512M 8.67 WRITE VDLR OPERATION (WRVDLR, 4Ah) Before the Write VDLR (WRVDLR) command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device. After the Write Enable (WREN) command has been decoded successfully, the device will set the Write Enable Latch (WEL) to enable the WRVDLR operation. The WRVDLR command (4Ah) is entered by shifting the instruction and data byte on SI. CE# must be driven to the logic high state after the eighth (8th) bit of data has been latched. If not, the WRVDLR command is not executed. As soon as CE# is driven to the logic high state, the WRVDLR operation is initiated with no delays. Figure 8.145 WRVDLR Sequence In SPI Mode CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 1 0 SCK Mode 0 SI SO Data In Instruction = 4Ah 7 6 5 4 3 High Impedence Figure 8.146 WRVDLR Sequence In QPI Mode CE# Mode 3 0 1 2 3 7:4 3:0 SCK Mode 0 IO[3:0] 4Ah Data In Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 168 IS25LP512M IS25WP512M 8.68 READ DLP OPERATION (RDDLP, 41h) The instruction is shifted on SI, then the 8-bit DLP from VDLR is shifted out on SO. It is possible to read the DLP continuously by providing multiples of eight clock cycles. Figure 8.147 RDDLP Sequence In SPI Mode CE # Mode 3 0 1 ... 7 8 9 15 ... 16 17 ... 23 ... 64 65 71 ... SCK Mode 0 SI Instruction = 41h tV SO Register Read 7 ... 6 Repeat Register Read 7 0 6 ... 0 ... ... Repeat Register Read 7 6 Figure 8.148 RDDLP Sequence In QPI Mode CE# Mode 3 0 1 2 3 4 5 ... 16 17 SCK Mode 0 tV IO[3:0] 41h 7:0 7:0 Register Read Repeat Register Read Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 ... 7:0 Repeat Register Read 169 ... 0 IS25LP512M IS25WP512M 9. ELECTRICAL CHARACTERISTICS 9.1 ABSOLUTE MAXIMUM RATINGS (1) Storage Temperature -65°C to +150°C Surface Mount Lead Soldering Temperature Standard Package 240°C 3 Seconds Lead-free Package 260°C 3 Seconds Input Voltage with Respect to Ground on All Pins -0.5V to VCC + 0.5V All Output Voltage with Respect to Ground -0.5V to VCC + 0.5V VCC IS25LP -0.5V to +6.0V IS25WP -0.5V to +2.5V Note: 1. Applied conditions greater than those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 9.2 OPERATING RANGE Ambient Operating Temperature VCC Power Supply Extended Grade E -40°C to 105°C Automotive Grade A3 -40°C to 125°C IS25LP 2.3V (VMIN) – 3.6V (VMAX); 3.0V (Typ) IS25WP 1.7V (VMIN) –1.95V (VMAX); 1.8V (Typ) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 170 IS25LP512M IS25WP512M 9.3 DC CHARACTERISTICS (Under operating range) Symbol ICC1 Typ(2) Max NORD 13 16 FRD Single at 133MHz 16 20 FRD Dual at 133MHz 18 22 FRD Quad at 133MHz 22 27 FRD Single at 104MHz 15 19 FRD Dual at 104MHz 17 21 FRD Quad at 104MHz 20 24 FRD Single DTR at 66MHz 15 19 FRD Dual DTR at 66MHz 17 21 21 26 Parameter Condition VCC Active Read current(3) Min FRD Quad DTR at 66MHz 85°C ICC2 VCC Program Current CE# = VCC 105°C 30 35 35 85°C ICC4 ICC5 VCC WRSR Current CE# = VCC VCC Erase Current (SER/4SER/BER32/4BER32/ BER64/4BER64) VCC Erase Current (CE) CE# = VCC CE# = VCC IS25LP ISB1 VCC Standby Current CMOS IS25WP Deep power down current 60 80 85°C 35 105°C 30 35 85°C 80 105°C IS25WP 60 80 125°C 80 85°C 90 (6) 140 (6) 21 125°C 260 85°C 90(6) 140 (6) 21 125°C 260 85°C 35 (6) 125°C 90 85°C 35 (6) Input Leakage Current uA µA 50 (6) 1 125°C ILI µA 50 (6) 17 105°C mA 35 125°C 105°C CE# = VCC, VIN = GND or VCC (4) 80 125°C 105°C IS25LP ISB2 80 105°C 105°C CE# = VCC, VIN = GND or VCC (4) mA 35 125°C ICC3 Units 90 VIN = 0V to VCC ±25) µA VIN = 0V to VCC (5) µA ILO Output Leakage Current VIL(1) Input Low Voltage VIH(1) Input High Voltage VOL Output Low Voltage IOL = 100 µA VOH Output High Voltage IOH = -100 µA Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 ±2 -0.5 0.3VCC V 0.7VCC VCC + 0.3 V 0.2 V VCC - 0.2 V 171 IS25LP512M IS25WP512M Notes: 1. Maximum DC voltage on input or I/O pins is VCC + 0.5V. During voltage transitions, input or I/O pins may overshoot VCC by +2.0V for a period of time not to exceed 20ns. Minimum DC voltage on input or I/O pins is -0.5V. During voltage transitions, input or I/O pins may undershoot GND by -2.0V for a period of time not to exceed 20ns. 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at VCC = VCC (Typ), TA=25°C. 3. Outputs are unconnected during reading data so that output switching current is not included. 4. VIN = Vcc for the dedicated RESET# pin (or ball). 5. The Max of ILI and ILO for the additional RESET# pin (or ball) is ±4 µA. 6. These parameters are characterized and are not 100% tested. 9.4 AC MEASUREMENT CONDITIONS Symbol Max Units Load Capacitance up to 104MHz/52MHz DTR 30 pF Load Capacitance up to 133MHz/66MHz DTR 10 pF TR,TF Input Rise and Fall Times 5 ns VIN Input Pulse Voltages 0.2VCC to 0.8VCC V VREFI Input Timing Reference Voltages 0.3VCC to 0.7VCC V VREFO Output Timing Reference Voltages 0.5VCC V CL Parameter Min Figure 9.1 Output test load & AC measurement I/O Waveform 0.8VCC VCC/2 AC Measurement Level IS25LP IS25WP Input 1.8k 0.2VCC OUTPUT PIN 1.2k 10/30pf 9.5 PIN CAPACITANCE (TA = 25°C, VCC=3V for IS25LP, VCC=1.8V for IS25WP, 1MHz) Symbol CIN CIN/OUT Parameter Test Condition Input Capacitance (CE#, SCK) Input/Output Capacitance (other pins) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Units Min Max Min Max VIN = 0V - 12 - 12 pF VIN/OUT = 0V - 16 - 24 pF 172 IS25LP512M IS25WP512M 9.6 AC CHARACTERISTICS (-40°C to 125°C, 2.3V – 3.6V for 3.0V device & 1.70V– 1.95V for 1.8V device) Symbol Parameter Min Clock Frequency except for fast read DTR and read (03h) fCT Typ(2) Max Units IS25LP 0 133 MHz IS25WP 0 112(5). MHz 0 66 MHz 0 50 MHz fC Clock Frequency for fast read DTR: SPI DTR, Dual DTR, Dual I/O DTR, Quad I/O DTR, and QPI DTR. Clock Frequency for read (03h) tCLCH(1) SCK Rise Time (peak to peak) 0.1 V/ns (1) SCK Fall Time ( peak to peak) 0.1 V/ns tCHCL For read (03h) 0.45 x 1/fCmax For others 0.45 x 1/fCTmax For read (03h) 0.45 x 1/fCmax For others 0.45 x 1/fCTmax tCKH SCK High Time tCKL SCK Low Time tCEH CE# High Time 7 ns tCS CE# Setup Time 5 ns tCH CE# Hold Time 3 ns tCHSL CE# Not Active Hold Time 3 ns tSHCH CE# Not Active Setup Time 3 ns tDS Data In Setup Time STR 2 ns DTR 1.5 tDH Data in Hold Time IS25LP Output Valid tV 2.7~3.6V, -40°C to 85°C 2.3~3.6V, -40°C to 125°C IS25WP tOH Output Hold Time tDIS(1) Output Disable Time 1.70~1.95V, -40°C to 125°C STR 2 DTR 1.5 ns ns @ CL = 10pF 6.0(4). ns @ CL = 30pF @ CL = 10pF 7.5(4). 7.0 ns ns @ CL = 30pF @ CL = 10pF 8.5. 7.5 ns ns @ CL = 30pF 9.0 ns 1 ns 8 ns tWHSL (3) Write Protect Setup Time 20 ns tSHWL (3) Write Protect Hold Time 100 ns tHLCH HOLD Active Setup Time relative to SCK 2 ns tCHHH HOLD Active Hold Time relative to SCK 2 ns tHHCH HOLD Not Active Setup Time relative to SCK 2 ns tCHHL HOLD Not Active Hold Time relative to SCK 2 tLZ(1) HOLD to Output Low Z 8 ns HOLD to Output High Z 8 ns tHZ (1) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 ns 173 IS25LP512M IS25WP512M Symbol tEC Typ(2) Max Units Sector Erase Time (4Kbyte) 100 300 ms Block Erase Time (32Kbyte) 0.14 0.5 s Block Erase time (64Kbyte) 0.17 1.0 s Block Erase time (256Kbyte) 0.68 4.0 s s Parameter Min Chip Erase Time tPP Page Program Time tRES1(1) Release deep power down tDP(1) Deep power down tW Write Status Register time tSUS(1) tRS(1) tSRST(1) Software Reset recovery time tRESET (1), tHWRST(1), 80 270 256byte 0.3 1.0 512byte 0.6 2.0 IS25LP 3 IS25WP 5 ms µs 3 µs 2 15 ms Suspend to read ready 100 - µs Resume to next suspend 80 RESET# pin low pulse width - µs 35 µs 35 µs 100 ns Hardware Reset recovery time Notes: 1. These parameters are characterized and not 100% tested. 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V CC = VCC (Typ), TA=25°C. 3. Only applicable as a constraint for a WRITE STATUS REGISTER command when SRWD is set at 1. 4. Values are guaranteed by characterization and not 100% tested in production. 5. RDSR(05h), RDID(ABh), RDJDID(9Fh), RDJDIDQ(AFh, QPI mode only), RDRP(61h), RDFR(48h) QPI mode operation frequency is105MHz at 105°C, and 104MHz at 125°C. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 174 IS25LP512M IS25WP512M 9.7 SERIAL INPUT/OUTPUT TIMING Figure 9.2 SERIAL INPUT/OUTPUT TIMING (Normal Mode) (1) tCEH CE# tCS t CHSL tCH tCKH SCK tDS SI tCKL tDH VALID IN VALID IN tV HI-Z SO tSHCH tOH tDIS HI-Z VALID OUTPUT Note1: For SPI Mode 0 (0,0) Figure 9.3 SERIAL INPUT/OUTPUT TIMING (DTR Mode) (1) tCEH CE# tCS t CHSL tCH tCKH SCK tDS SI tCKL tDH VALID IN VALID IN VALID IN tV SO tSHCH HI-Z tV Output tOH Output tDIS HI-Z Note1: For SPI Mode 0 (0,0) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 175 IS25LP512M IS25WP512M Figure 9.4 HOLD TIMING CE# tHLCH tCHHL tHHCH SCK tCHHH tHZ tLZ SO SI HOLD# Figure 9.5 WRITE PROTECT SETUP AND HOLD TIMIMNG DURING WRITE STATUS REGISTER (SRWD=1) WP# tWHSL tSHWL CE # Mode 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 1 0 SCK Mode 0 SI SO Data In Instruction = 01h 7 6 5 4 3 High Impedence Note: WP# must be kept high until the embedded operation finish. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 176 IS25LP512M IS25WP512M 9.8 POWER-UP AND POWER-DOWN At Power-up and Power-down, the device must be NOT SELECTED until Vcc reaches at the right level. (Adding a simple pull-up resistor on CE# is recommended.) Power up timing VCC VCC ( max) Chip Selection Not Allowed VCC(min) tVCE = Vcc min. to CE# Low Device is fully accessible VWI Time Symbol Parameter tVCE(1) Vcc(min) to CE# Low VWI(1) Write Inhibit Voltage Min. Max 300 us IS25LP 2.1 IS25WP 1.5 Note: These parameters are characterized and not 100% tested. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 Unit 177 V IS25LP512M IS25WP512M 9.9 PROGRAM/ERASE PERFORMANCE Parameter Sector Erase Time (4Kbyte) Block Erase Time (32Kbyte) Block Erase Time (64Kbyte) Block Erase Time (256Kbyte) Chip Erase Time 256byte Page Programming Time 512byte Byte Program Typ Max Unit 100 300 ms 0.14 0.5 s 0.17 1.0 s 0.68 4.0 s 80 270 s 0.3 1.0 ms 0.6 2.0 ms 10 50 µs Note: These parameters are characterized and not 100% tested. 9.10 RELIABILITY CHARACTERISTICS Parameter Min Max Unit Test Method Endurance 100,000 - Cycles JEDEC Standard A117 Data Retention 20 - Years JEDEC Standard A117 Latch-Up -100 +100 mA JEDEC Standard 78 Note: These parameters are characterized and not 100% tested. Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 178 IS25LP512M IS25WP512M 10. PACKAGE TYPE INFORMATION 10.1 8-CONTACT ULTRA-THIN SMALL OUTLINE NO-LEAD (WSON) PACKAGE 8X6MM (L) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 179 IS25LP512M IS25WP512M 10.2 16-LEAD PLASTIC SMALL OUTLINE PACKAGE (300 MILS BODY WIDTH) (M) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 180 IS25LP512M IS25WP512M 10.3 24-BALL THIN PROFILE FINE PITCH BGA 6X8MM 4X6 BALL ARRAY (G) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 181 IS25LP512M IS25WP512M 10.4 24-BALL THIN PROFILE FINE PITCH BGA 6X8MM 5X5 BALL ARRAY (H) Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 182 IS25LP512M IS25WP512M 11. ORDERING INFORMATION – Valid Part Numbers IS25LP 512M - R H L E TEMPERATURE RANGE E = Extended (-40°C to +105°C) A3 = Automotive Grade (-40°C to +125°C) PACKAGING CONTENT L = RoHS compliant PACKAGE Type (1) L = 8-contact WSON (8x6mm) M = 16-pin SOIC 300mil G = 24-ball TFBGA (6x8mm) 4x6 ball array H = 24-ball TFBGA (6x8mm) 5x5 ball array Option J = Standard R = Dedicated RESET# in 16-pin SOIC, 24-ball BGA Q = QE bit set to 1 P = Dedicated RESET# + QE bit set to 1 K = Optional 512-byte Page & 256KB Sector T = Optional 512-byte Page & 256KB Sector with dedicated RESET# for SOIC/TFBGA Die Revision Blank = First Gen. Density 512M = 512 Mb BASE PART NUMBER IS = Integrated Silicon Solution Inc. 25LP = FLASH, 2.30V ~ 3.60V, QPI 25WP = FLASH, 1.70V ~ 1.95V, QPI Note: 1. No dedicated RESET# for 8x6mm WSON PKG Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 183 IS25LP512M IS25WP512M Density, Voltage 512M, 3V Frequency (MHz) STR 133, DTR 66 Order Part Number Package IS25LP512M-JLLE 8-contact WSON 8x6mm IS25LP512M-JMLE 16-pin SOIC 300mil IS25LP512M-JGLE 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25LP512M-JHLE 24-ball TFBGA 6x8mm 5x5 ball array IS25LP512M-RMLE 16-pin SOIC 300mil IS25LP512M-RGLE 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25LP512M-RHLE 24-ball TFBGA 6x8mm 5x5 ball array IS25LP512M-QLLE 8-contact WSON 8x6mm IS25LP512M-QMLE 16-pin SOIC 300mil IS25LP512M-QHLE 24-ball TFBGA 6x8mm 5x5 ball array IS25LP512M-PMLE 16-pin SOIC 300mil IS25LP512M-PHLE 24-ball TFBGA 6x8mm 5x5 ball array IS25LP512M-KMLE 16-pin SOIC 300mil IS25LP512M-KGLE 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25LP512M-KHLE 24-ball TFBGA 6x8mm 5x5 ball array IS25LP512M-TMLE 16-pin SOIC 300mil IS25LP512M-TGLE 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25LP512M-THLE 24-ball TFBGA 6x8mm 5x5 ball array IS25LP512M-JLLA3 8-contact WSON (8x6mm) IS25LP512M-JMLA3 16-pin SOIC 300mil IS25LP512M-JGLA3 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25LP512M-JHLA3 24-ball TFBGA 6x8mm 5x5 ball array IS25LP512M-RMLA3 16-pin SOIC 300mil IS25LP512M-RGLA3 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25LP512M-RHLA3 24-ball TFBGA 6x8mm 5x5 ball array IS25LP512M-QLLA3 8-contact WSON (8x6mm) IS25LP512M-QMLA3 16-pin SOIC 300mil IS25LP512M-QHLA3 24-ball TFBGA 6x8mm 5x5 ball array IS25LP512M-FMLA3 16-pin SOIC 300mil IS25LP512M-FHLA3 24-ball TFBGA 6x8mm 5x5 ball array IS25LP512M-KLLA3 8-contact WSON (8x6mm) IS25LP512M-KMLA3 16-pin SOIC 300mil IS25LP512M-KGLA3 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25LP512M-KHLA3 24-ball TFBGA 6x8mm 5x5 ball array IS25LP512M-TMLA3 16-pin SOIC 300mil IS25LP512M-TGLA3 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25LP512M-THLA3 24-ball TFBGA 6x8mm 5x5 ball array Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 184 IS25LP512M IS25WP512M Density, Voltage 512M, 1.8V Frequency (MHz) STR 112, DTR 66 Order Part Number Package IS25WP512M-JLLE 8-contact WSON 8x6mm IS25WP512M-JMLE 16-pin SOIC 300mil IS25WP512M-JGLE 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25WP512M-JHLE 24-ball TFBGA 6x8mm 5x5 ball array IS25WP512M-RMLE 16-pin SOIC 300mil IS25WP512M-RGLE 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25WP512M-RHLE 24-ball TFBGA 6x8mm 5x5 ball array IS25WP512M-QLLE 8-contact WSON 8x6mm IS25WP512M-QMLE 16-pin SOIC 300mil IS25WP512M-QHLE 24-ball TFBGA 6x8mm 5x5 ball array IS25WP512M-PMLE 16-pin SOIC 300mil IS25WP512M-PHLE 24-ball TFBGA 6x8mm 5x5 ball array IS25WP512M-KLLE 8-contact WSON 8x6mm IS25WP512M-KMLE 16-pin SOIC 300mil IS25WP512M-KGLE 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25WP512M-KHLE 24-ball TFBGA 6x8mm 5x5 ball array IS25WP512M-TMLE 16-pin SOIC 300mil IS25WP512M-TGLE 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25WP512M-THLE 24-ball TFBGA 6x8mm 5x5 ball array IS25WP512M-JLLA3 8-contact WSON (8x6mm) IS25WP512M-JMLA3 16-pin SOIC 300mil IS25WP512M-JGLA3 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25WP512M-JHLA3 24-ball TFBGA 6x8mm 5x5 ball array IS25WP512M-RMLA3 16-pin SOIC 300mil IS25WP512M-RGLA3 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25WP512M-RHLA3 24-ball TFBGA 6x8mm 5x5 ball array IS25WP512M-QLLA3 8-contact WSON (8x6mm) IS25WP512M-QMLA3 16-pin SOIC 300mil IS25WP512M-QHLA3 24-ball TFBGA 6x8mm 5x5 ball array IS25WP512M-PMLA3 16-pin SOIC 300mil IS25WP512M-PHLA3 24-ball TFBGA 6x8mm 5x5 ball array IS25WP512M-KLLA3 8-contact WSON (8x6mm) IS25WP512M-KMLA3 16-pin SOIC 300mil IS25WP512M-KGLA3 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25WP512M-KHLA3 24-ball TFBGA 6x8mm 5x5 ball array IS25WP512M-TMLA3 16-pin SOIC 300mil IS25WP512M-TGLA3 24-ball TFBGA 6x8mm 4x6 ball array (Call Factory) IS25WP512M-THLA3 24-ball TFBGA 6x8mm 5x5 ball array Note: 1. A3 meets AEC-Q100 requirements with PPAP. Temp Grades: E= -40 to 105°C, A3= -40 to 125°C Integrated Silicon Solution, Inc.- www.issi.com Rev.A5 04/28/2021 185
IS25LP512M-RMLE 价格&库存

很抱歉,暂时无法提供与“IS25LP512M-RMLE”相匹配的价格&库存,您可以联系我们找货

免费人工找货