0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IS61LPS51236B-200B3LI-TR

IS61LPS51236B-200B3LI-TR

  • 厂商:

    ISSI(芯成半导体)

  • 封装:

    TBGA165

  • 描述:

    IC SRAM 18MBIT PARALLEL 165TFBGA

  • 数据手册
  • 价格&库存
IS61LPS51236B-200B3LI-TR 数据手册
IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B 512K x36 and 1024K x18 18Mb SYNCHRONOUS PIPELINED SINGLE CYCLE DESELECT STATIC RAM AUGUST 2017 FEATURES DESCRIPTION • • • • • • The 18Mb product family features high-speed, lowpower synchronous static RAMs designed to provide burstable, high-performance memory for communication and networking applications. The IS61LPS/VPS/VVPS51236B are organized as 524,288 words by 36bits. The IS61LPS/VPS/VVPS102418B are organized as 1,048,576 words by 18bits. Fabricated with ISSI's advanced CMOS technology, the device integrates a 2-bit burst counter, high-speed SRAM core, and high-drive capability outputs into a single monolithic circuit. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input. • • • • • • • • • • Internal self-timed write cycle Individual Byte Write Control and Global Write Clock controlled, registered address, data and control Burst sequence control using MODE input Three chip enable option for simple depth expansion and address pipelining Common data inputs and data outputs Auto Power-down during deselect Single cycle deselect Snooze MODE for reduced-power standby JEDEC 100-pin QFP, 165-ball BGA and 119-ball BGA packages Power supply: LPS: VDD 3.3V (± 5%), VDDQ 3.3V/2.5V (± 5%) VPS: VDD 2.5V (± 5%), VDDQ 2.5V (± 5%) VVPS: VDD 1.8V (± 5%), VDDQ 1.8V (± 5%) JTAG Boundary Scan for BGA packages Commercial, Industrial and Automotive temperature support Lead-free available For leaded options, please contact ISSI Write cycles are internally self-timed and are initiated by the rising edge of the clock input. Write cycles can be one to four bytes wide as controlled by the write control inputs. Separate byte enables allow individual bytes to be written. The byte write operation is performed by using the byte write enable (/BWE) input combined with one or more individual byte write signals (/BWx). In addition, Global Write (/GW) is available for writing all bytes at one time, regardless of the byte write controls. FAST ACCESS TIME Symbol Parameter -250 -200 Units tKQ Clock Access Time 2.6 3.0 ns tKC Cycle time 4 5 ns Frequency 250 200 MHz Bursts can be initiated with either /ADSP (Address Status Processor) or /ADSC (Address Status Cache Controller) input pins. Subsequent burst addresses can be generated internally and controlled by the /ADV (burst address advance) input pin. The mode pin is used to select the burst sequence order. Linear burst is achieved when this pin is tied LOW. Interleave burst is achieved when this pin is tied HIGH or left floating. Copyright © 2017 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that: a.) the risk of injury or damage has been minimized; b.) the user assume all such risks; and c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 1 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B BLOCK DIAGRAM Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 2 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B PIN CONFIGURATION 512K x 36, 165-Ball BGA (Top View) A B C D E F G H J K L M N P R 1 2 3 4 5 6 7 8 9 10 11 NC NC DQPc DQc DQc DQc DQc NC DQd DQd DQd DQd DQPd NC MODE A A NC DQc DQc DQc DQc VSS DQd DQd DQd DQd NC NC NC /CE CE2 VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A /BWc /BWd VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A /BWb /BWa VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDI TMS /CE2 CLK VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS A A1* A0* /BWE /GW VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS TDO TCK /ADSC /OE VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A /ADV /ADSP VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A A A NC DQb DQb DQb DQb NC DQa DQa DQa DQa NC A A NC NC DQPb DQb DQb DQb DQb ZZ DQa DQa DQa DQa DQPa A A Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Bottom View 165-Ball, 13 mm x 15mm BGA Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 Symbol CLK A0,A1 A /ADV /ADSP /ADSC MODE /CE,CE2,/CE2 /BWE /BWx (x=a-d) /GW /OE DQx DQPx TCK,TDI, TDO,TMS ZZ NC VDD VDDQ VSS Pin Name Synchronous Clock Synchronous Burst Address Inputs Address Inputs Synchronous Burst Address Advance Address Status Processor Address Status Controller Burst Sequence Selection Synchronous Chip Enable Byte Write Enable Synchronous Byte Write Inputs Global Write Enable Output Enable Data Inputs/Outputs Parity Data I/O JTAG Pins Power Sleep Mode No Connect Power Supply I/O Power Supply Ground 3 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B 1024K x 18, 165-Ball BGA (Top View) A B C D E F G H J K L M N P R 1 2 3 4 5 6 7 8 9 10 11 NC NC NC NC NC NC NC NC DQb DQb DQb DQb DQPb NC MODE A A NC DQb DQb DQb DQb VSS NC NC NC NC NC NC NC /CE CE2 VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A /BWb NC VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A NC /BWa VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDI TMS /CE2 CLK VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS A A1* A0* /BWE /GW VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS NC TDO TCK /ADSC /OE VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS A A /ADV /ADSP VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ A A A A NC NC NC NC NC NC DQa DQa DQa DQa NC A A A NC DQPa DQa DQa DQa DQa ZZ NC NC NC NC NC A A Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTION Bottom View 165-Ball, 13 mm x 15mm BGA Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 Symbol CLK A0,A1 A /ADV /ADSP /ADSC MODE CE, /CE, CE2 /BWE /BWx (x=a-b) /GW /OE DQx TCK,TDI, TDO,TMS ZZ NC VDD VDDQ VSS Pin Name Synchronous Clock Synchronous Burst Address Inputs Address Inputs Synchronous Burst Address Advance Address Status Processor Address Status Controller Burst Sequence Selection Synchronous Chip Enable Byte Write Enable Synchronous Byte Write Inputs Global Write Enable Output Enable Data Inputs/Outputs JTAG Pins Power Sleep Mode No Connect Power Supply I/O Power Supply Ground 4 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B 512K x 36, 119-Ball BGA (Top View) A B C D E F G H J K L M N P R T U 1 2 3 4 5 6 7 VDDQ NC NC DQc DQc VDDQ DQc DQc VDDQ DQd DQd VDDQ DQd DQd NC NC VDDQ A A A DQPc A A A VSS VSS VSS /BWc VSS NC VSS /BWd VSS VSS VSS MODE A TDI /ADSP /ADSC VDD NC /CE /OE /ADV /GW VDD CLK NC /BWE A1* A0* VDD A TCK A A A VSS VSS VSS /BWb VSS NC VSS /BWa VSS VSS VSS NC A TDO A A A DQPb VDDQ NC NC DQb DQb VDDQ DQb DQb VDDQ DQa DQa VDDQ DQa DQa NC ZZ VDDQ DQc DQc DQc DQc VDD DQd DQd DQd DQd DQPd A NC TMS DQb DQb DQb DQb VDD DQa DQa DQa DQa DQPa A NC NC Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Bottom View 119-Ball, 14 mm x 22 mm BGA Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 Symbol CLK A0,A1 A /ADV /ADSP /ADSC MODE /CE /BWE /BWx (x=a-d) /GW /OE DQx TCK,TDI, TDO,TMS ZZ NC VDD VDDQ VSS Pin Name Synchronous Clock Synchronous Burst Address Inputs Address Inputs Synchronous Burst Address Advance Address Status Processor Address Status Controller Burst Sequence Selection Synchronous Chip Enable Byte Write Enable Synchronous Byte Write Inputs Global Write Enable Output Enable Data Inputs/Outputs JTAG Pins Power Sleep Mode No Connect Power Supply I/O Power Supply Ground 5 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B 1024K x 18, 119-Ball BGA (Top View) A B C D E F G H J K L M N P R T U 1 2 3 VDDQ NC NC DQb NC VDDQ NC DQb VDDQ NC DQb VDDQ DQb NC NC NC VDDQ A A A NC DQb NC DQb NC VDD DQb NC DQb NC DQPb A A TMS A A A VSS VSS VSS /BWb VSS NC VSS VSS VSS VSS VSS MODE A TDI 4 /ADSP /ADSC VDD NC /CE /OE /ADV /GW VDD CLK NC /BWE A1* A0* VDD NC TCK 5 6 7 A A A VSS VSS VSS VSS VSS NC VSS /BWa VSS VSS VSS NC A TDO A A A DQPa NC DQa NC DQa VDD NC DQa NC DQa NC A A NC VDDQ NC NC NC DQa VDDQ DQa NC VDDQ DQa NC VDDQ NC DQa NC ZZ VDDQ Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Bottom View 119-Ball, 14 mm x 22 mm BGA Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 Symbol CLK A0,A1 A /ADV /ADSP /ADSC MODE /CE /BWE /BWx (x=a-b) /GW /OE DQx DQPx TCK,TDI, TDO,TMS ZZ NC VDD VDDQ VSS Pin Name Synchronous Clock Synchronous Burst Address Inputs Address Inputs Synchronous Burst Address Advance Address Status Processor Address Status Controller Burst Sequence Selection Synchronous Chip Enable Byte Write Enable Synchronous Byte Write Inputs Global Write Enable Output Enable Data Inputs/Outputs Parity Data I/O JTAG Pins Power Sleep Mode No Connect Power Supply I/O Power Supply Ground 6 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 A A /CE CE2 /BWd /BWc /BWb /BWa /CE2 VDD VSS CLK /GW /BWE /OE /ADSC /ADSP /ADV A A 512K x 36, 100PIN QFP (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 512K x 36 DQPb DQb DQb VDDQ VSS DQb DQb DQb DQb VSS VDDQ DQb DQb VSS NC VDD ZZ DQa DQa VDDQ VSS DQa DQa DQa DQa VSS VDDQ DQa DQa DQPa MODE A A A A A1 A0 NC NC VSS VDD A A A A A A A A A 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 DQPc DQc DQc VDDQ VSS DQc DQc DQc DQc VSS VDDQ DQc DQc NC VDD NC VSS DQd DQd VDDQ VSS DQd DQd DQd DQd VSS VDDQ DQd DQd DQPd Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Symbol CLK A0,A1 A /ADV /ADSP /ADSC MODE /CE,CE2,/CE2 /BWE /BWx (x=a-d) Pin Name Synchronous Clock Synchronous Burst Address Inputs Address Inputs Synchronous Burst Address Advance Address Status Processor Address Status Controller Burst Sequence Selection Synchronous Chip Enable Byte Write Enable Synchronous Byte Write Inputs Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 Symbol /GW /OE DQx DQPx ZZ NC VDD VDDQ VSS Pin Name Global Write Enable Output Enable Data Inputs/Outputs Parity Data I/O Power Sleep Mode No Connect Power Supply I/O Power Supply Ground 7 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 A A /CE CE2 NC NC /BWb /BWa /CE2 VDD VSS CLK /GW /BWE /OE /ADSC /ADSP /ADV A A 1024K x 18, 100PIN QFP (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 1024K x 18 A NC NC VDDQ VSS NC DQPa DQa DQa VSS VDDQ DQa DQa VSS NC VDD ZZ DQa DQa VDDQ VSS DQa DQa NC NC VSS VDDQ NC NC NC MODE A A A A A1 A0 NC NC VSS VDD A A A A A A A A A 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 NC NC NC VDDQ VSS NC NC DQb DQb VSS VDDQ DQb DQb NC VDD NC VSS DQb DQb VDDQ VSS DQb DQb DQPb NC VSS VDDQ NC NC NC Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Symbol CLK A0,A1 A /ADV /ADSP /ADSC MODE /CE,CE2,/CE2 /BWE Pin Name Synchronous Clock Synchronous Burst Address Inputs Address Inputs Synchronous Burst Address Advance Address Status Processor Address Status Controller Burst Sequence Selection Synchronous Chip Enable Byte Write Enable Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 Symbol /GW /OE DQx ZZ NC VDD VDDQ VSS /BWx (x=a-b) Pin Name Global Write Enable Output Enable Data Inputs/Outputs Power Sleep Mode No Connect Power Supply I/O Power Supply Ground Synchronous Byte Write Inputs 8 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B TRUTH TABLE SYNCHRONOUS TRUTH TABLE OPERATION ADDRESS /CE /CE2 CE2 ZZ /ADSP /ADSC /ADV /WRITE /OE CLK DQ Deselect Cycle, Power-Down Deselect Cycle, Power-Down Deselect Cycle, Power-Down Deselect Cycle, Power-Down Deselect Cycle, Power-Down Snooze Mode, Power-Down Read Cycle, Begin Burst Read Cycle, Begin Burst Write Cycle, Begin Burst Read Cycle, Begin Burst Read Cycle, Begin Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Write Cycle, Continue Burst Write Cycle, Continue Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Write Cycle, Suspend Burst Write Cycle, Suspend Burst None H X X L None L X L L X L X X X L-H High-Z L X X X X L-H High-Z None L H X L L X X X X L-H High-Z None L X None L H L L H L X X X L-H High-Z X L H L X X X L-H High-Z None X X X H X X X X X X High-Z External L External L L H L L X X X L L-H Q L H L L X X X H L-H High-Z External L L H L H L X L X L-H D External L L H L H L X H L L-H Q External L L H L H L X H H L-H High-Z Next X X X L H H L H L L-H Q Next X X X L H H L H H L-H High-Z Next H X X L X H L H L L-H Q Next H X X L X H L H H L-H High-Z Next X X X L H H L L X L-H D Next H X X L X H L L X L-H D Current X X X L H H H H L L-H Q Current X X X L H H H H H L-H High-Z Current H X X L X H H H L L-H Q Current H X X L X H H H H L-H High-Z Current X X X L H H H L X L-H D Current H X X L X H H L X L-H D NOTE: 1. X means “Don’t Care.” H means logic HIGH. L means logic LOW. 2. For WRITE, L means one or more byte write enable signals (/BWa-d) and /BWE are LOW or /GW is LOW. /WRITE = H for all /BWx, /BWE, /GW HIGH. 3. /BWa enables WRITEs to DQa’s and DQPa. /BWb enables WRITEs to DQb’s and DQPb. /BWc enables WRITEs to DQc’s and DQPc. /BWd enables WRITEs to DQd’s and DQPd. DQPa and DQPb are available on the x18 version. DQPa-DQPd are available on the x36 version. 4. All inputs except /OE and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK. 5. Wait states are inserted by suspending burst. 6. For a WRITE operation following a READ operation, /OE must be HIGH before the input data setup time and held HIGH during the input data hold time. 7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up. 8. /ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and /BWE LOW or /GW LOW for the subsequent L-H edge of CLK. See WRITE timing diagram for clarification. Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 9 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B PARTIAL TRUTH TABLE Operation READ READ WRITE BYTE a WRITE BYTE b WRITE BYTE c WRITE BYTE d WRITE ALL BYTEs WRITE ALL BYTEs /GW /BWE /BWa /BWb /BWc /BWd H H H H H H H L H L L L L L L X X H L H H H L X X H H L H H L X X H H H L H L X X H H H H L L X Notes: 1. X means "Don't Care". 2. All inputs in this table must beet setup and hold time around the rising edge of CLK. ADDRESS SEQUENCE IN BURST MODE INTERLEAVED BURST ADDRESS TABLE (MODE = VDD or NC) External Address 1st Burst Address 2nd Burst Address A1 A0 A1 A0 A1 A0 00 01 10 01 00 11 10 11 00 11 10 01 3rd Burst Address A1 A0 11 10 01 00 LINEAR BURST ADDRESS TABLE (MODE = Vss ) 0,0 A1', A0' = 1,1 0,1 1,0 Power Up Sequence 1 2 VDDQ → VDD → I/O Pins Notes: 1. VDD can be applied at the same time as VDDQ 2. Applying I/O inputs is recommended after VDDQ is stable. The inputs of the I/O pins can be applied at the same time as VDDQ as long as Vih (level of I/O pins) is lower than VDDQ. Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 10 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B ABSOLUTE MAXIMUM RATINGS AND OPERATING RANGE ABSOLUTE MAXIMUM RATINGS Symbol Parameter TSTG Storage Temperature PD Power Dissipation IOUT Output Current (per I/O) VIN, VOUT Voltage Relative to Vss for I/O Pins VIN Voltage Relative to Vss for Address and Control Inputs VDD Voltage on VDD Supply Relative to Vss LPS Value –65 to +150 1.6 100 –0.5 to VDDQ +0.5 –0.5 to VDD +0.5 VPS/VVPS Value –65 to +150 1.6 20 –0.5 to VDDQ + 0.3 –0.5 to VDD + 0.3 –0.5 to VDD +0.5 –0.5 to VDD +0.3 Unit °C W mA V V V Notes: 1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, precautions may be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. 3. This device contains circuitry that will ensure the output devices are in High-Z at power up. OPERATING RANGE (IS61LPSx) Range Ambient Temperature Commercial 0°C to +70°C Industrial -40°C to +85°C Automotive -40°C to +125°C VDD VDDQ 3.3V ± 5% 3.3V ± 5% 3.3V ± 5% 3.3V / 2.5V ± 5% 3.3V / 2.5V ± 5% 3.3V / 2.5V ± 5% VDD VDDQ OPERATING RANGE (IS61VPSx) Range Commercial Industrial Ambient Temperature 0°C to +70°C -40°C to +85°C Automotive OPERATING RANGE (IS61VVPSx) Range Ambient Temperature Commercial 0°C to +70°C Industrial -40°C to +85°C Automotive Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 2.5V ± 5% 2.5V ± 5% 2.5V ± 5% 2.5V ± 5% *Please contact ISSI VDD VDDQ 1.8V ± 5% 1.8V ± 5% 1.8V ± 5% 1.8V ± 5% *Please contact ISSI 11 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B CHARACTERISTICS DC ELECTRICAL CHARACTERISTICS (Over operating temperature range) Symbol VOH VOL VIH VIL ILI ILO Parameter Output HIGH Voltage Output LOW Voltage Input HIGH Voltage Input LOW Voltage Input Leakage Current Output Leakage Current Test Conditions 3.3V 2.5V Min. Max. Min. Max. 2.4 — 2.0 — 0.4 2.0 1.8V Unit Min. Max. — VDDQ -0.4 — V — 0.4 — 0.4 V VDD +0.3 1.7 VDD +0.3 0.7* VDD –0.3 0.8 –0.3 0.7 –0.3 Vss≤VIN≤ VDD –1 1 –1 1 –1 1 μA Vss≤VOUT≤ VDD,/OE=VIH –1 1 –1 1 –1 1 μA IOH=-4.0 mA(3.3V) IOH=–1.0 mA(2.5V,1.8V) IOL=8.0 mA(3.3V) IOL=1.0 mA(2.5V,1.8V) VDD +0.3 0.3* VDD V V Notes: 1. All voltages referenced to ground. 2. Overshoot: 3.3V and 2.5V: VIH (AC) ≤ VDD + 1.5V (Pulse width less than tKC /2) 1.8V: VIH (AC) ≤ VDD + 0.5V (Pulse width less than tKC /2) 3. Undershoot: 3.3V and 2.5V: VIL (AC) ≥ -1.5V (Pulse width less than tKC /2) 1.8V: VIL (AC) ≥ -0.5V (Pulse width less than tKC /2) 4. MODE pin has an internal pull-up and should be tied to VDD or Vss . It exhibits ±100μA maximum leakage current when tied to ≤Vss+0.2V or ≥ VDDQ– 0.2V. 5. ZZ pin has an internal pull-down and should be tied to VDD or Vss . It exhibits ±100μA maximum leakage current when tied to ≤Vss+0.2V or ≥ VDD–0.2V. POWER SUPPLY CHARACTERISTICS (Over Operating Range) Symbol Parameter Test Conditions Temp. range ICC AC Operating, Supply Current Device Selected, /OE = VIH, ZZ ≤ VIL, All Inputs ≤ 0.2V or ≥ VDD – 0.2V,Cycle Time ≥ tKC min. Com. Ind. Auto. -250 Max x18 x36 270 270 290 290 - Device Deselected, VDD = Max.,All Inputs ≤ VIL or ≥ VIH,ZZ ≤ VIL, f = Max. Com. 80 80 70 70 ISB Standby Current TTL Input Ind. 90 90 80 80 Standby Current CMOS Input Device Deselected, VDD = Max.,VIN ≤ Vss + 0.2V or ≥ VDD – 0.2V,f = 0 Auto Com. Ind. Auto 60 70 - 60 70 - 90 60 70 80 90 60 70 80 ISB1 -200 Max x18 x36 220 220 240 240 260 260 Unit mA mA mA Note: 1. Power-up assumes a linear ramp from 0V to VDD (min) within 200ms. During this time Vih < VDD and VDDQ < VDD Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 12 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B CAPACITANCE Symbol CIN COUT Parameter Input Capacitance Input/Output Capacitance Conditions VIN = 0V VOUT = 0V Max. 6 8 Unit pF pF Notes: 1. Tested initially and after any design or process changes that may affect these parameters. 2. Test conditions: Ta = 25°C, f = 1 MHz, VDD = 3.3V. READ/WRITE CYCLE SWITCHING CHARACTERISTICS (Over Operating Range) Symbol Parameter fMAX tKC tKH tKL tKQ tKQX(2) tKQLZ(2,3) tKQHZ(2,3) tOEQ tOELZ(2,3) tOEHZ(2,3) tAS tSS tWS tCES tADVS tDS tAH tSH tWH tCEH tADVH tDH Clock Frequency Cycle Time Clock High Time Clock Low Time Clock Access Time Clock High to Output Invalid Clock High to Output Low-Z Clock High to Output High-Z Output Enable to Output Valid Output Enable to Output Low-Z Output Disable to Output High-Z Address Setup Time Address Status Setup Time Read/Write Setup Time Chip Enable Setup Time Address Advance Setup Time Data Setup Time Address Hold Time Address Status Hold Time Write Hold Time Chip Enable Hold Time Address Advance Hold Time Data Hold Time -250 -200 Unit Min. Max. Min. Max. — 4 1.7 1.7 — 0.8 0.8 — — 0 — 1.2 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 0.3 250 — — — 2.6 — — 2.6 2.6 — 2.6 — — — — — — — — — — — — — 5 2 2 — 1.5 1 — — 0 — 1.4 1.4 1.4 1.4 1.4 1.4 0.4 0.4 0.4 0.4 0.4 0.4 200 — — — 3.0 — — 3.0 3.0 — 3.0 — — — — — — — — — — — — MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Notes: 1. Configuration signal MODE is static and must not change during normal operation. 2. Guaranteed but not 100% tested. This parameter is periodically sampled. 3. Tested with load in Figure 2. Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 13 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B 3.3V I/O AC TEST CONDITIONS Parameter Input Pulse Level Input Rise and Fall Times Input and Output Timing and Reference Level VTT VLOAD R1, R2 Output Load Unit 0V to 3.0V 1.5 ns 1.5V 1.5V 3.3V 317Ω, 351Ω See Figures 1 and 2 2.5V I/O AC TEST CONDITIONS Parameter Input Pulse Level Input Rise and Fall Times Input and Output Timing and Reference Level VTT VLOAD R1, R2 Output Load Unit 0V to 2.5V 1.5 ns 1.25V 1.25V 2.5V 1667Ω, 1538Ω See Figures 1 and 2 1.8V I/O AC TEST CONDITIONS Parameter Input Pulse Level Input Rise and Fall Times Input and Output Timing and Reference Level VTT VLOAD R1, R2 Output Load Unit 0V to 1.8V 1.5 ns 0.9V 0.9V 1.8V 1KΩ, 1KΩ See Figures 1 and 2 I/O OUTPUT LOAD EQUIVALENT R1 VLOAD OUTPUT ZO =50Ω OUTPUT 50Ω R2 5 pF Including jig and scope VTT Figure1 Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 Figure2 14 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B READ CYCLE TIMING Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 15 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B WRITE CYCLE TIMING tKC CLK tSS tKH tSH /ADSP is blocked by /CE inactive tKL /ADSP /ADSC initiates Write /ADSC /ADV must be inactive for /ADSP Write tAVS tAVH /ADV tAS Address tAH WR1 WR2 tWS tWH tWS tWH tWS tWH WR3 /GW /BWE /BWx WR1 tCES tCEH tCES tCEH tCES tCEH tWS tWH WR2 WR3 /CE Masks /ADSP /CE Unselected with CE2 CE2 and /CE2 only sampled with /ADSP or/ ADSC CE2 /CE2 /OE DATAOUT High-Z tDS DATAIN High-Z tDH 1a Single Write Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 /BW1-/BW4 only are applied to first cycle of WR2 2a 2b Burst Write 2c 2d 3a Write Unselected 16 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B SNOOZE MODE ELECTRICAL CHARACTERISTICS Symbol Parameter Conditions ISB2 Current during SNOOZE MODE tPDS tPUS tZZI tRZZI ZZ active to input ignored ZZ inactive to input sampled ZZ active to SNOOZE current ZZ inactive to exit SNOOZE current ZZ ≥ VIH Temperature Range Com. Ind. Auto. — — — — Min. Max. Unit — — — — 2 — 0 30 35 40 2 — 2 — mA mA mA cycle cycle cycle ns SLEEP MODE TIMING CLK tPDS ZZ setup cycle tPUS ZZ recovery cycle ZZ tZZI Isupply ISB2 tRZZI All Inputs (except ZZ) Deselect or Read Only Deselect or Read Only Normal operation cycle Outputs (Q) High-Z Don't Care Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 17 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B IEEE 1149.1 TAP and Boundary Scan The SRAM provides a limited set of JTAG functions to test the interconnection between SRAM I/Os and printed circuit board traces or other components. There is no multiplexer in the path from I/O pins to the RAM core. In conformance with IEEE Standard 1149.1, the SRAM contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register. The TAP controller has a standard 16-state machine that resets internally on power-up. Therefore, a TRST signal is not required Disabling the JTAG feature The SRAM can operate without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (VSS) to prevent clocking of the device. TDI and TMS are internally pulled up and may be left disconnected. They may alternately be connected to VDD through a pull-up resistor. TDO should be left disconnected. On power-up, the device will come up in a reset state, which will not interfere with device operation. Test Access Port Signal List: 1. Test Clock (TCK) This signal uses VDD as a power supply. The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK. 2. Test Mode Select (TMS) This signal uses VDD as a power supply. The TMS input is used to send commands to the TAP controller and is sampled on the rising edge of TCK. 3. Test Data-In (TDI) This signal uses VDD as a power supply. The TDI input is used to serially input test instructions and information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. TDI is connected to the most significant bit (MSB) of any register. For more information regarding instruction register loading, please see the TAP Controller State Diagram. 4. Test Data-Out (TDO) This signal uses VDD as a power supply. The TDO output ball is used to serially clock test instructions and data out from the registers. The TDO output driver is only active during the Shift-IR and Shift-DR TAP controller states. In all other states, the TDO pin is in a High-Z state. The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. For more information, please see the TAP Controller State Diagram. Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 18 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B TAP Controller State and Block Diagram ... Boundary Scan Register (75 90 bits) TDI Bypass Register (1 bit) Identification Register (32 bits) TDO Instruction Register (3 bits) Control Signals TMS TAP Controller TCK TAP Controller State Machine 1 Test Logic Reset 0 Run Test Idle 1 Select DR 1 Select IR 0 1 0 0 1 1 Capture DR 0 Capture IR 0 0 Shift DR 1 1 1 1 Exit1 DR Exit1 IR 0 0 0 Pause DR 1 Exit2 DR 0 Exit2 IR 1 0 1 Update DR Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 0 Pause IR 1 1 0 Shift IR Update IR 0 1 0 19 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B Performing a TAP Reset A Reset is performed by forcing TMS HIGH (VDD) for five rising edges of TCK. RESET may be performed while the SRAM is operating and does not affect its operation. At power-up, the TAP is internally reset to ensure that TDO comes up in a high-Z state. TAP Registers Registers are connected between the TDI and TDO pins and allow data to be scanned into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction registers. Data is serially loaded into the TDI pin on the rising edge of TCK and output on the TDO pin on the falling edge of TCK. 1. Instruction Register This register is loaded during the update-IR state of the TAP controller. At power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section. When the TAP controller is in the capture-IR state, the two LSBs are loaded with a binary “01” pattern to allow for fault isolation of the board-level serial test data path. 2. Bypass Register The bypass register is a single-bit register that can be placed between the TDI and TDO balls. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (VSS) when the BYPASS instruction is executed. 3. Boundary Scan Register The boundary scan register is connected to all the input and bidirectional balls on the SRAM. Several balls are also included in the scan register to reserved balls. The boundary scan register is loaded with the contents of the SRAM Input and Output ring when the TAP controller is in the capture-DR state and is then placed between the TDI and TDO balls when the controller is moved to the shift-DR state. Each bit corresponds to one of the balls on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO. 4. Identification (ID) Register The ID register is loaded with a vendor-specific, 32-bit code during the capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the shift-DR state. Scan Register Sizes Register Name Instruction Bypass ID Boundary Scan Bit Size 3 1 32 90 TAP Instruction Set Many instructions are possible with an eight-bit instruction register and all valid combinations are listed in the TAP Instruction Code Table. All other instruction codes that are not listed on this table are reserved and should not be used. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted from the instruction register through the TDI and TDO pins. To execute an instruction once it is shifted in, the TAP controller must be moved into the Update-IR state. Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 20 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B 1. EXTEST The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-scan register cells at output balls are used to apply a test vector, while those at input balls capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output driver is turned on, and the PRELOAD data is driven onto the output balls. 2. IDCODE The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO balls and allows the IDCODE to be shifted out of the device when the TAP controller enters the shift-DR state. The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test logic reset state. 3. SAMPLE Z If the SAMPLE-Z instruction is loaded in the instruction register, all SRAM outputs are forced to an inactive drive state (high-Z), moving the TAP controller into the capture-DR state loads the data in the SRAMs input into the boundary scan register, and the boundary scan register is connected between TDI and TDO when the TAP controller is moved to the shift-DR state. 4. SAMPLE/PRELOAD When the SAMPLE/PRELOAD instruction is loaded into the instruction register and the TAP controller is in the capture-DR state, a snapshot of data on the inputs and bidirectional balls is captured in the boundary scan register. The user must be aware that the TAP controller clock can only operate at a frequency up to 10 MHz, while the SRAM clock operates significantly faster. Because there is a large difference between the clock frequencies, it is possible that during the capture-DR state, an input or output will undergo a transition. The TAP may then try to capture a signal while in transition. This will not harm the device, but there is no guarantee as to the value that will be captured. Repeatable results may not be possible. To ensure that the boundary scan register will capture the correct value of a signal, the SRAM signal must be stabilized long enough to meet the TAP controller’s capture setup plus hold time. The SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/ PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the CLK captured in the boundary scan register. Once the data is captured, it is possible to shift out the data by putting the TAP into the shift-DR state. This places the boundary scan register between the TDI and TDO balls. 6. BYPASS When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a shift-DR state, the bypass register is placed between TDI and TDO. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board. 7. RESERVED These instructions are not implemented but are reserved for future use. Please do not use these instructions. JTAG DC Operating Characteristics (Over the Operating Temperature Range, 2.5V and 3.3V Option) Parameter Symbol Min Max JTAG Input High Voltage VIH1 2.0 VDD+0.3 JTAG Input Low Voltage VIL1 –0.3 0.7 JTAG Output High Voltage VOH1 1.7 Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 Units V V V Notes |IOH1|=2mA 21 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B JTAG Output Low Voltage JTAG Output High Voltage JTAG Output Low Voltage JTAG Input Leakage Current JTAG Output Leakage Current VOL1 VOH2 VOL2 ILIJTAG ILOJTAG 2.1 -10 -10 0.7 0.2 +10 +10 V V V µA µA IOL1=2mA |IOH2|=100µA IOL2=100µA 0 ≤ Vin ≤ VDD 0 ≤ Vout ≤ VDD Units V V V V µA µA Notes Notes: 1. All voltages referenced to VSS (GND); All JTAG inputs and outputs are LVTTL-compatible. JTAG DC Operating Characteristics (Over the Operating Temperature Range, 1.8V Option) Parameter Symbol Min JTAG Input High Voltage VIH1 TBD TBD JTAG Input Low Voltage VIL1 TBD JTAG Output High Voltage VOH1 TBD JTAG Output Low Voltage VOL1 TBD JTAG Input Leakage Current ILIJTAG TBD JTAG Output Leakage Current ILOJTAG Max TBD TBD TBD TBD TBD TBD Notes: 1. All voltages referenced to VSS (GND); All JTAG inputs and outputs are LVTTL-compatible. JTAG AC Test Conditions (Over the Operating Temperature Range) Parameter Input Pulse High Level Input Pulse Low Level Input rise and fall time Test load termination supply voltage Input and Output Timing Reference Level Symbol VIH1 VIL1 TR1 VREF VREF 1.8V Option 2.5V Option 3.3V Option TBD 2.5 3.0 TBD 0 0 TBD 1.5 1.5 TBD 1.25 1.5 TBD 1.25 1.5 Units V V ns V V TAP Output Load Equivalent VREF 50Ω 50Ω Output 20pF Test Comparator VREF Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 22 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B JTAG AC Characteristics (Over the Operating Temperature Range) Parameter Symbol TCK cycle time tTHTH TCK high pulse width tTHTL TCK low pulse width tTLTH TMS Setup tMVTH TMS Hold tTHMX TDI Setup tDVTH TDI Hold tTHDX TCK Low to Valid Data tTLOV Min 100 40 40 10 10 10 10 – Max – – – – – – – 20 Units ns ns ns ns ns ns ns ns JTAG Timing Diagram tTHTL tTHTH tTLTH TCK tMVTH tTHMX tDVTH tTHDX TMS TDI tTLOV TDO Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 23 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B Instruction Set Code Instruction TDO Output Notes 000 001 010 EXTEST IDCODE SAMPLE-Z Boundary Scan Register 32-bit Identification Register Boundary Scan Register 2, 6 011 RESERVED Do Not Use 5 100 SAMPLE(/PRELOAD) Boundary Scan Register 4 101 RESERVED Do Not Use 5 110 RESERVED Do Not Use 5 111 BYPASS Bypass Register 3 1, 2 Notes: 1. Places DQs in high-Z in order to sample all input data, regardless of other SRAM inputs. 2. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data. 3. BYPASS register is initiated to VSS when BYPASS instruction is invoked. The BYPASS register also holds the last serially loaded TDI when exiting the shift-DR state. 4. SAMPLE instruction does not place DQs in high-Z. 5. This instruction is reserved. Invoking this instruction will cause improper SRAM functionality. 6. By default, it places DQs in high-Z. If the internal register on the scan chain is set high, DQs will be updated with information loaded via a previous SAMPLE instruction. The actual transfer occurs during the update IR state after EXTEST is loaded. The value of the internal register can be changed during SAMPLE and EXTEST only. ID Register Definition Instruction Field Revision Number (31:28) Device Depth (27:23) Device Width (22:18) ISSI Device ID (17:12) ISSI JEDEC ID (11:1) ID Register Presence (0) Description Reserved for version number. Defines depth of SRAM. 512K or 1024K Defines Width of the SRAM. x36 or x18 Reserved for future use. Allows unique identification of SRAM vendor. Indicate the presence of an ID register. Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 512K x 36 xxxx 00111 00100 xxxxxx 00001010101 1 1024K x 18 xxxx 01000 00011 xxxxxx 00001010101 1 24 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B 165 BGA BOUNDARY SCAN ORDER 165 BGA Bit # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 X36 Bump ID N6 N7 N10 P11 P8 R8 R9 P9 P10 R10 R11 H11 N11 M11 L11 M10 L10 K11 J11 K10 J10 H9 H10 G11 F11 G10 E11 D11 F10 E10 D10 C11 A11 B11 A10 B10 A9 B9 C10 A8 Signal A9 NC NC A8 A18 A17 A16 A15 A14 A13 A12 ZZ DQa0 DQa1 DQa2 DQa3 DQa4 DQa5 DQa6 DQa7 DQa8 NC NC DQb8 DQb7 DQb6 DQb5 DQb4 DQb3 DQb2 DQb1 DQb0 NC NC A11 A10 /ADV /ADSP NC /ADSC X18 Bump ID N6 N7 N10 P11 P8 R8 R9 P9 P10 R10 R11 H11 N11 M11 L11 M10 L10 K11 J11 K10 J10 H9 H10 G11 F11 G10 E11 D11 C11 E10 D10 F10 A11 B11 A10 B10 A9 B9 C10 A8 Signal A9 NC NC A8 A18 A17 A16 A15 A14 A13 A12 ZZ NC NC NC DQa8 DQa7 NC NC DQa6 DQa5 NC NC DQa4 DQa3 NC DQa2 DQa1 DQa0 NC NC NC A19 NC A11 A10 /ADV /ADSP NC /ADSC Continued on next page Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 25 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B Bit # 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 165 BGA X36 X18 Bump ID Signal Bump ID B8 /OE B8 A7 /BWE A7 B7 /GW B7 B6 CLK B6 A6 /CE2 A6 B5 /Bwa B5 A5 /Bwb A5 A4 /Bwc A4 B4 /Bwd B4 B3 CE2 B3 A3 /CE1 A3 A2 A7 A2 B2 A6 B2 C2 NC C2 B1 NC B1 A1 NC A1 C1 DQc0 C1 D1 DQc1 D1 E1 DQc2 E1 D2 DQc3 D2 E2 DQc4 E2 F1 DQc5 F1 G1 DQc6 G1 F2 DQc7 F2 G2 DQc8 G2 H1 NC H1 H2 NC H2 H3 NC H3 J1 DQd8 J1 K1 DQd7 K1 J2 DQd6 J2 L1 DQd5 L1 M1 DQd4 M1 K2 DQd3 N1 L2 DQd2 L2 M2 DQd1 M2 N1 DQd0 K2 N2 NC N2 P1 NC P1 R1 MODE R1 Signal /OE /BWE /GW CLK /CE2 /Bwa NC /Bwb NC CE2 /CE1 A7 A6 NC NC NC NC NC NC DQb8 DQb7 NC NC DQb6 DQb5 NC NC NC DQb4 DQb3 NC DQb2 DQb1 DQb0 NC NC NC NC NC MODE Continued on next page Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 26 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B Bit # 81 82 83 84 85 86 87 88 89 90 165 BGA X36 X18 Bump ID Signal Bump ID Signal R2 NC R2 NC P3 A5 P3 A5 R3 A4 R3 A4 P2 NC P2 NC P4 A2 P4 A2 R4 A3 R4 A3 N5 NC N5 NC P6 A1 P6 A1 R6 A0 R6 A0 * Int * Int Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 27 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B 119 BGA Boundary Scan Order TBD Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 28 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B ORDERING INFORMATION Commercial Range: 0°C to +70°C VDD Speed 250MHz X18 IS61LPS102418B-250B3 IS61LPS102418B-250B2 IS61LPS102418B-250TQL IS61LPS102418B-250B3L IS61LPS102418B-250B2L IS61LPS102418B-200B3 IS61LPS102418B-200B2 IS61LPS102418B-200TQL IS61LPS102418B-200B3L IS61LPS102418B-200B2L IS61VPS102418B-250B3 IS61VPS102418B-250B2 IS61LPS102418B-250TQL IS61VPS102418B-250B3L IS61VPS102418B-250B2L IS61VPS102418B-200B3 IS61VPS102418B-200B2 IS61VPS102418B-200TQL IS61VPS102418B-200B3L IS61VPS102418B-200B2L *Please contact ISSI Marketing 200MHz *Please contact ISSI Marketing 250MHz VDD=3.3V, VDDQ=2.5V/3.3V 200MHz 250MHz VDD=2.5V, VDDQ=2.5V 200MHz VDD=1.8V, VDDQ=1.8V X36 IS61LPS51236B-250B3 IS61LPS51236B-250B2 IS61LPS51236B-250TQL IS61LPS51236B-250B3L IS61LPS51236B-250B2L IS61LPS51236B-200B3 IS61LPS51236B-200B2 IS61LPS51236B-200TQL IS61LPS51236B-200B3L IS61LPS51236B-200B2L IS61VPS51236B-250B3 IS61VPS51236B-250B2 IS61VPS51236B-250TQL IS61VPS51236B-250B3L IS61VPS51236B-250B2L IS61VPS51236B-200B3 IS61VPS51236B-200B2 IS61VPS51236B-200TQL IS61VPS51236B-200B3L IS61VPS51236B-200B2L Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 Package 165 BGA 119 BGA 100 QFP, Lead-free 165 BGA, Lead-free 119 BGA, Lead-free 165 BGA 119 BGA 100 QFP, Lead-free 165 BGA, Lead-free 119 BGA, Lead-free 165 BGA 119 BGA 100 QFP, Lead-free 165 BGA, Lead-free 119 BGA, Lead-free 165 BGA 119 BGA 100 QFP, Lead-free 165 BGA, Lead-free 119 BGA, Lead-free 29 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B Industrial Range: -40°C to +85°C VDD Speed 250MHz X18 IS61LPS102418B-250B3I IS61LPS102418B-250B2I IS61LPS102418B-250TQLI IS61LPS102418B-250B3LI IS61LPS102418B-250B2LI IS61LPS102418B-200B3I IS61LPS102418B-200B2I IS61LPS102418B-200TQLI IS61LPS102418B-200B3LI IS61LPS102418B-200B2LI IS61VPS102418B-250B3I IS61VPS102418B-250B2I IS61LPS102418B-250TQLI IS61VPS102418B-250B3LI IS61VPS102418B-250B2LI IS61VPS102418B-200B3I IS61VPS102418B-200B2I IS61VPS102418B-200TQLI IS61VPS102418B-200B3LI IS61VPS102418B-200B2LI *Please contact ISSI Marketing 200MHz *Please contact ISSI Marketing 250MHz VDD=3.3V, VDDQ=2.5V/3.3V 200MHz 250MHz VDD=2.5V, VDDQ=2.5V 200MHz VDD=1.8V, VDDQ=1.8V X36 IS61LPS51236B-250B3I IS61LPS51236B-250B2I IS61LPS51236B-250TQLI IS61LPS51236B-250B3LI IS61LPS51236B-250B2LI IS61LPS51236B-200B3I IS61LPS51236B-200B2I IS61LPS51236B-200TQLI IS61LPS51236B-200B3LI IS61LPS51236B-200B2LI IS61VPS51236B-250B3I IS61VPS51236B-250B2I IS61VPS51236B-250TQLI IS61VPS51236B-250B3LI IS61VPS51236B-250B2LI IS61VPS51236B-200B3I IS61VPS51236B-200B2I IS61VPS51236B-200TQLI IS61VPS51236B-200B3LI IS61VPS51236B-200B2LI Package 165 BGA 119 BGA 100 QFP, Lead-free 165 BGA, Lead-free 119 BGA, Lead-free 165 BGA 119 BGA 100 QFP, Lead-free 165 BGA, Lead-free 119 BGA, Lead-free 165 BGA 119 BGA 100 QFP, Lead-free 165 BGA, Lead-free 119 BGA, Lead-free 165 BGA 119 BGA 100 QFP, Lead-free 165 BGA, Lead-free 119 BGA, Lead-free Automotive Range: -40°C to +125°C VDD Speed VDD=3.3V, VDDQ=2.5V/3.3V 200MHz X36 IS64LPS51236B-200TQLA3 IS64LPS51236B-200B3LA3 IS64LPS51236B-200B2LA3 X18 IS64VPS102436B-200TQLA3 IS64VPS102436B-200B3LA3 IS64VPS102436B-200B2LA3 Package 100 QFP, Lead-free 165 BGA, Lead-free 119 BGA, Lead-free *For all other voltages and options in automotive grade, please contact ISSI. Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 30 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 31 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 32 IS61LPS51236B/IS61VPS51236B/IS61VVPS51236B IS61LPS102418B/IS61VPS102418B/IS61VVPS102418B Integrated Silicon Solution, Inc.- www.issi.com Rev. D 07/31/2017 33
IS61LPS51236B-200B3LI-TR 价格&库存

很抱歉,暂时无法提供与“IS61LPS51236B-200B3LI-TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货