0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IS61VPS51236A-250B3I

IS61VPS51236A-250B3I

  • 厂商:

    ISSI(芯成半导体)

  • 封装:

    TBGA165

  • 描述:

    IC SRAM 18MBIT PARALLEL 165TFBGA

  • 详情介绍
  • 数据手册
  • 价格&库存
IS61VPS51236A-250B3I 数据手册
IS61vPS25672A IS61lPS25672A IS61vPS51236A IS61lPS51236A IS61vPS102418A IS61lPS102418A 256K x 72, 512K x 36, 1024K x 18 18Mb SYNCHRONOUS PIPELINED, Single CYCLE DESELECT STATIC RAM FEATURES • Internal self-timed write cycle • Individual Byte Write Control and Global Write • Clock controlled, registered address, data and control • Burst sequence control using MODE input • Three chip enable option for simple depth expansion and address pipelining • Common data inputs and data outputs • Auto Power-down during deselect • Single cycle deselect • Snooze MODE for reduced-power standby • JTAG Boundary Scan for PBGA package • Power Supply LPS: Vdd 3.3V + 5%, Vddq 3.3V/2.5V + 5% VPS: Vdd 2.5V + 5%, Vddq 2.5V + 5% • JEDEC 100-Pin TQFP, 119-ball PBGA, 165-ball PBGA, and 209-ball (x72) packages • Lead-free available JULY 2017 DESCRIPTION The  ISSI IS61LPS/VPS51236A, IS61LPS/VPS102418A, and IS61LPS/VPS25672A are high-speed, low-power synchronous static RAMs designed to provide burstable, high-performance memory for communication and networking applications. The IS61LPS/VPS51236A is organized as 524,288 words by 36 bits, the IS61LPS/VPS102418A is organized as 1,048,576 words by 18 bits, and the IS61LPS/ VPS25672A is organized as 262,144 words by 72 bits. Fabricated with ISSI's advanced CMOS technology, the device integrates a 2-bit burst counter, high-speed SRAM core, and high-drive capability outputs into a single monolithic circuit. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input. Write cycles are internally self-timed and are initiated by the rising edge of the clock input. Write cycles can be one to four bytes wide as controlled by the write control inputs. Separate byte enables allow individual bytes to be written. The byte write operation is performed by using the byte write enable (BWE) input combined with one or more individual byte write signals (BWx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the byte write controls. Bursts can be initiated with either ADSP (Address Status Processor) or ADSC (Address Status Cache Controller) input pins. Subsequent burst addresses can be generated internally and controlled by the ADV (burst address advance) input pin. The mode pin is used to select the burst sequence order, Linear burst is achieved when this pin is tied LOW. Interleave burst is achieved when this pin is tied HIGH or left floating. FAST ACCESS TIME Symbol tkq tkc Parameter Clock Access Time Cycle Time Frequency 250 2.6 4 250 200 3.1 5 200 Units ns ns MHz Copyright © 2017 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that: a.) the risk of injury or damage has been minimized; b.) the user assume all such risks; and c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances Integrated Silicon Solution, Inc. — 1-800-379-4774 1 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A BLOCK DIAGRAM MODE Q0 CLK CLK A0 BINARY COUNTER ADSC ADSP A Q1 CE ADV A1 A0' A1' 256Kx72; 512Kx36; 1024Kx18 MEMORY ARRAY CLR 19/20 D Q 17/18 19/20 ADDRESS REGISTER CE CLK 36, or 18 or 72 D GW BWE BW(a-h) x18: a,b x36: a-d x72: a-h 36, or 18 or 72 Q DQ(a-h) BYTE WRITE REGISTERS CLK CE 2/4/8 CE2 D Q ENABLE REGISTER CE2 INPUT REGISTERS CLK OUTPUT REGISTERS CLK 36, or 18 or 72 DQa - DQd OE CE CLK D ZZ POWER DOWN Q ENABLE DELAY REGISTER CLK OE 2 Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A 165-pin BGA 119-pin BGA 165-Ball, 13x15 mm BGA 1mm Ball Pitch, 11x15 Ball Array 119-Ball, 14x22 mm BGA 1mm Ball Pitch, 7x17 Ball Array Bottom view Bottom View 209-Ball BGA 209-Ball, 14 mm x 22 mm BGA 1 mm Ball Pitch, 11 x 19 Ball Array Bottom View Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 3 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A Pin Configuration ­— 256K x 72, 209-Ball PBGA (Top View) A B C D E F G H J K L M N P R T U V W 1 2 3 4 5 6 7 8 9 10 11 DQg DQg A CE2 ADSP ADSC ADV CE2 A DQb DQb DQg DQg BWc BWg NC BWE A BWb BWf DQb DQb DQg DQg BWh BWd NC CE NC BWe BWa DQb DQb DQg DQg VSS NC NC OE GW NC VSS DQb DQb DQPg DQPc Vddq Vddq Vdd Vdd Vdd Vddq Vddq DQPf DQPb DQc DQc VSS VSS VSS NC VSS VSS VSS DQf DQf DQc DQc Vddq Vddq Vdd NC Vdd Vddq Vddq DQf DQf DQc DQc VSS VSS VSS NC VSS VSS VSS DQf DQf DQc DQc Vddq Vddq Vdd NC Vdd Vddq Vddq DQf DQf NC NC CLK NC VSS NC VSS NC NC NC NC DQh DQh Vddq Vddq Vdd NC Vdd Vddq Vddq DQa DQa DQh DQh VSS VSS VSS NC VSS VSS VSS DQa DQa DQh DQh Vddq Vddq Vdd NC Vdd Vddq Vddq DQa DQa DQh DQh VSS VSS VSS ZZ VSS VSS VSS DQa DQa DQPd DQPh Vddq Vddq Vdd Vdd Vdd Vddq Vddq DQPa DQPe DQd DQd VSS NC NC MODE NC NC VSS DQe DQe DQd DQd NC A A A A A NC DQe DQe DQd DQd A A A A1 A A A DQe DQe DQd DQd TMS TDI A A0 A TDO TCK DQe DQe 11 x 19 Ball BGA—14 x 22 mm2 Body—1 mm Ball Pitch PIN DESCRIPTIONS Symbol A Pin Name Address Inputs A0, A1 Synchronous Burst Address Inputs ADV Synchronous Burst Address Advance ADSP Address Status Processor ADSC GW Address Status Controller Global Write Enable CLK CE, CE2, CE2 Synchronous Clock Synchronous Chip Select BWx (x=a,b,c,d e,f,g,h) Synchronous Byte Write Controls 4 Symbol Pin Name BWE Byte Write Enable OE Output Enable ZZ Power Sleep Mode MODE Burst Sequence Selection TCK, TDO TMS, TDI NC DQx DQPx Vdd Vddq JTAG Pins No Connect Data Inputs/Outputs Data Inputs/Outputs 3.3V/2.5V Power Supply Isolated Output Power Supply 3.3V/2.5V Vss Ground Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A 119 BGA PACKAGE PIN CONFIGURATION-512K x 36 (TOP VIEW) 1 2 3 4 5 6 7 A VDDQ A A ADSP A A VDDQ B NC A A ADSC A A NC C NC A A VDD A A NC D DQc DQPc Vss NC Vss DQPb DQb E DQc DQc Vss CE Vss DQb DQb F VDDQ DQc Vss OE Vss DQb VDDQ G DQc DQc BWc ADV BWb DQb DQb H DQc DQc Vss GW Vss DQb DQb J VDDQ VDD NC VDD NC VDD VDDQ K DQd DQd Vss CLK Vss DQa DQa L DQd DQd BWd NC BWa DQa DQa M VDDQ DQd Vss BWE Vss DQa VDDQ N DQd DQd Vss A1* Vss DQa DQa P DQd DQPd Vss A0* Vss DQPa DQa R NC A MODE VDD NC A NC T NC NC A A A NC ZZ U VDDQ TMS TDI TCK TDO NC VDDQ Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Symbol A Pin Name Address Inputs A0, A1 Synchronous Burst Address Inputs ADV Synchronous Burst Address Advance ADSP Address Status Processor ADSC GW Address Status Controller Global Write Enable CLK CE Synchronous Clock Synchronous Chip Select BWx (x=a-d) Synchronous Byte Write Controls BWE Byte Write Enable Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 Symbol OE Pin Name Output Enable ZZ Power Sleep Mode MODE Burst Sequence Selection TCK, TDO JTAG Pins TMS, TDI NC No Connect DQa-DQd Data Inputs/Outputs DQPa-Pd Output Power Supply Vdd Power Supply Vddq Output Power Supply Vss Ground 5 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A 119 BGA PACKAGE PIN CONFIGURATION 1Mx18 (TOP VIEW) 1 2 3 4 5 6 7 A VDDQ A A ADSP A A VDDQ B NC A A ADSC A A NC C NC A A VDD A A NC D DQb NC Vss NC Vss DQPa NC E NC DQb Vss CE Vss NC DQa F VDDQ NC Vss OE Vss DQa VDDQ G NC DQb BWb ADV Vss NC DQa H DQb NC Vss GW Vss DQa NC J VDDQ VDD NC VDD NC VDD VDDQ K NC DQb Vss CLK Vss NC DQa L DQb NC Vss NC BWa DQa NC M VDDQ DQb Vss BWE Vss NC VDDQ N DQb NC Vss A1* Vss DQa NC P NC DQPb Vss A0* Vss NC DQa R NC A MODE VDD NC A NC T NC A A NC A A ZZ U VDDQ TMS TDI TCK TDO NC VDDQ Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Symbol A Pin Name Address Inputs A0, A1 Synchronous Burst Address Inputs ADV Synchronous Burst Address Advance ADSP Address Status Processor ADSC GW Address Status Controller Global Write Enable CLK CE Synchronous Clock Synchronous Chip Select BWx (x=a,b) Synchronous Byte Write Controls BWE 6 Byte Write Enable Symbol OE Pin Name Output Enable ZZ Power Sleep Mode MODE Burst Sequence Selection TCK, TDO JTAG Pins TMS, TDI NC No Connect DQa-DQb Data Inputs/Outputs DQPa-Pb Output Power Supply Vdd Power Supply Vddq Output Power Supply Vss Ground Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A 165 PBGA PACKAGE PIN CONFIGURATION 512K x 36 (TOP VIEW) 1 2 A NC A B NC A C DQPc NC D DQc DQc 3 4 5 6 7 8 9 10 11 CE BWc BWb CE2 BWE CE2 BWd BWa CLK GW ADSC ADV A NC OE ADSP A NC Vddq Vss Vss Vss Vss Vss Vddq NC DQPb Vddq Vdd Vss Vss Vss Vdd Vddq DQb DQb DQb E DQc DQc Vddq Vdd Vss Vss Vss Vdd Vddq DQb F DQc DQc Vddq Vdd Vss Vss Vss Vdd Vddq DQb DQb G DQc DQc Vddq Vdd Vss Vss Vss Vdd Vddq DQb DQb H NC Vss NC Vdd Vss Vss Vss Vdd NC NC ZZ J DQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq DQa DQa K DQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq DQa DQa L DQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq DQa DQa M DQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq DQa DQa N DQPd NC Vddq Vss NC A Vss Vss Vddq NC DQPa P NC NC A A TDI A1* TDO A A A A R MODE NC A A TMS A0* TCK A A A A Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Symbol A Pin Name Address Inputs A0, A1 Synchronous Burst Address Inputs ADV Synchronous Burst Address Advance ADSP Address Status Processor ADSC GW Address Status Controller Global Write Enable CLK CE, CE2, CE2 Synchronous Clock Synchronous Chip Select BWx (x=a,b,c,d) Synchronous Byte Write Controls Symbol Pin Name BWE Byte Write Enable OE Output Enable ZZ Power Sleep Mode MODE Burst Sequence Selection TCK, TDO TMS, TDI NC DQx DQPx Vdd Vddq JTAG Pins No Connect Data Inputs/Outputs Data Inputs/Outputs 3.3V/2.5V Power Supply Isolated Output Power Supply 3.3V/2.5V Vss Ground Integrated Silicon Solution, Inc. — 1-800-379-4774 7 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A 165 PBGA PACKAGE PIN CONFIGURATION 1M x 18 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 A NC A CE BWb NC CE2 BWE ADSC ADV A A B NC A CE2 NC BWa CLK GW OE ADSP A NC C NC NC Vddq Vss Vss Vss Vss Vss Vddq NC DQPa D NC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC DQa E NC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC DQa DQa F NC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC G NC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC DQa H NC Vss NC Vdd Vss Vss Vss Vdd NC NC ZZ J DQb NC Vddq Vdd Vss Vss Vss Vdd Vddq DQa NC K DQb NC Vddq Vdd Vss Vss Vss Vdd Vddq DQa NC L DQb NC Vddq Vdd Vss Vss Vss Vdd Vddq DQa NC M DQb NC Vddq Vdd Vss Vss Vss Vdd Vddq DQa NC N DQPb NC Vddq Vss NC A Vss Vss Vddq NC NC P NC NC A A TDI A1* TDO A A A A R MODE NC A A TMS A0* TCK A A A A Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Symbol A Pin Name Address Inputs Symbol A0, A1 Synchronous Burst Address Inputs ADV Synchronous Burst Address Advance ADSP Address Status Processor ADSC GW Address Status Controller Global Write Enable CLK CE, CE2, CE2 Synchronous Clock Synchronous Chip Select BWx (x=a,b) Synchronous Byte Write Controls 8 Pin Name BWE Byte Write Enable OE Output Enable ZZ Power Sleep Mode MODE Burst Sequence Selection TCK, TDO TMS, TDI NC DQx DQPx Vdd Vddq JTAG Pins No Connect Data Inputs/Outputs Data Inputs/Outputs 3.3V/2.5V Power Supply Isolated Output Power Supply 3.3V/2.5V Vss Ground Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A PIN CONFIGURATION A A CE CE2 BWd BWc BWb BWa CE2 VDD VSS CLK GW BWE OE ADSC ADSP ADV A A 100-Pin TQFP DQPc DQPb DQb DQb VDDQ VSS DQb DQb DQb DQb VSS VDDQ DQb DQb VSS NC VDD ZZ DQa DQa VDDQ VSS DQa DQa DQa DQa VSS VDDQ DQa DQa DQPa MODE A A A A A1 A0 NC NC VSS VDD A A A A A A A A A DQc DQc VDDQ VSS DQc DQc DQc DQc VSS VDDQ DQc DQc NC VDD NC VSS DQd DQd VDDQ VSS DQd DQd DQd DQd VSS VDDQ DQd DQd DQPd 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 10 71 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 512K x 36 PIN DESCRIPTIONS A0, A1 A Synchronous Address Inputs. These pins must tied to the two LSBs of the address bus. Synchronous Address Inputs ADSC Synchronous Controller Address Status ADSP Synchronous Processor Address Status ADV Synchronous Burst Address Advance BWa-BWd Synchronous Byte Write Enable BWE Synchronous Byte Write Enable CE, CE2, CE2 Synchronous Chip Enable CLK DQa-DQd Synchronous Data Input/Output DQPa-DQPd Parity Data Input/Output GW MODE Synchronous Global Write Enable Burst Sequence Mode Selection OE Output Enable Vdd 3.3V/2.5V Power Supply Vddq Isolated Output Buffer Supply: 3.3V/2.5V Ground Snooze Enable Vss ZZ Synchronous Clock Integrated Silicon Solution, Inc. — 1-800-379-4774 9 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A PIN CONFIGURATION A A CE CE2 NC NC BWb BWa CE2 VDD VSS CLK GW BWE OE ADSC ADSP ADV A A 100-Pin TQFP 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 10 71 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A NC NC VDDQ VSS NC DQPa DQa DQa VSS VDDQ DQa DQa VSS NC VDD ZZ DQa DQa VDDQ VSS DQa DQa NC NC VSS VDDQ NC NC NC MODE A A A A A1 A0 NC NC VSS VDD A A A A A A A A A NC NC NC VDDQ VSS NC NC DQb DQb VSS VDDQ DQb DQb NC VDD NC VSS DQb DQb VDDQ VSS DQb DQb DQPb NC VSS VDDQ NC NC NC 1024K x 18 PIN DESCRIPTIONS A0, A1 Synchronous Address Inputs. These pins must tied to the two LSBs of the address bus. A Synchronous Address Inputs Synchronous Controller Address Status ADSC ADSP Synchronous Processor Address Status ADV Synchronous Burst Address Advance BWa-BWb Synchronous Byte Write Enable BWE Synchronous Byte Write Enable CE, CE2, CE2 Synchronous Chip Enable CLK Synchronous Clock DQa-DQb Synchronous Data Input/Output 10 DQPa-DQPb Parity Data I/O; DQPa is parity for DQa1-8; DQPb is parity for DQb1-8 GW MODE Synchronous Global Write Enable Burst Sequence Mode Selection OE Vdd Vddq Vss ZZ Output Enable 3.3V/2.5V Power Supply Isolated Output Buffer Supply: 3.3V/2.5V Ground Snooze Enable Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A TRUTH TABLE(1-8)  (3CE option) OPERATION ADDRESS CE CE2 CE2 ZZ ADSP ADSC ADV WRITE OE CLK DQ Deselect Cycle, Power-Down None H X X L X L X X X L-H High-Z Deselect Cycle, Power-Down None L X L L L X X X X L-H High-Z Deselect Cycle, Power-Down None L H X L L X X X X L-H High-Z Deselect Cycle, Power-Down None L X L L H L X X X L-H High-Z Deselect Cycle, Power-Down None L H X L H L X X X L-H High-Z Snooze Mode, Power-Down None X X X H X X X X X X High-Z Read Cycle, Begin Burst External L L H L L X X X L L-H Q Read Cycle, Begin Burst External L L H L L X X X H L-H High-Z Write Cycle, Begin Burst External L L H L H L X L X L-H D Read Cycle, Begin Burst External L L H L H L X H L L-H Q Read Cycle, Begin Burst External L L H L H L X H H L-H High-Z Read Cycle, Continue Burst Next X X X L H H L H L L-H Q Read Cycle, Continue Burst Next X X X L H H L H H L-H High-Z Read Cycle, Continue Burst Next H X X L X H L H L L-H Q Read Cycle, Continue Burst Next H X X L X H L H H L-H High-Z Write Cycle, Continue Burst Next X X X L H H L L X L-H D Write Cycle, Continue Burst Next H X X L X H L L X L-H D Read Cycle, Suspend Burst Current X X X L H H H H L L-H Q Read Cycle, Suspend Burst Current X X X L H H H H H L-H High-Z Read Cycle, Suspend Burst Current H X X L X H H H L L-H Q Read Cycle, Suspend Burst Current H X X L X H H H H L-H High-Z Write Cycle, Suspend Burst Current X X X L H H H L X L-H D Write Cycle, Suspend Burst Current H X X L X H H L X L-H D NOTE: 1. X means “Don’t Care.” H means logic HIGH. L means logic LOW. 2. For WRITE, L means one or more byte write enable signals (BWa-h) and BWE are LOW or GW is LOW. WRITE = H for all BWx, BWE, GW HIGH. 3. BWa enables WRITEs to DQa’s and DQPa. BWb enables WRITEs to DQb’s and DQPb. BWc enables WRITEs to DQc’s  and DQPc. BWd enables WRITEs to DQd’s and DQPd. BWe enables WRITEs to DQe’s and DQPe. BWf enables WRITEs to DQf’s and DQPf. BWg enables WRITEs to DQg’s and DQPg. BWh enables WRITEs to DQh’s and DQPh. DQPa-DQPh are available on the x72 version. DQPa and DQPb are available on the x18 version.  DQPa-DQPd are available on the x36 version. 4. All inputs except OE and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK. 5. Wait states are inserted by suspending burst. 6. For a WRITE operation following a READ operation, OE must be HIGH before the input data setup time and held HIGH during the input data hold time. 7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up. 8. ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. See WRITE timing diagram for clarification. Integrated Silicon Solution, Inc. — 1-800-379-4774 11 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A TRUTH TABLE(1-8)  (1CE option) NEXT CYCLE Deselected Read, Begin Burst Read, Begin Burst Write, Begin Burst Read, Begin Burst Read, Begin Burst Read, Continue Burst Read, Continue Burst Read, Continue Burst Read, Continue Burst Write, Continue Burst Write, Continue Burst Read, Suspend Burst Read, Suspend Burst Read, Suspend Burst Read, Suspend Burst Write, Suspend Burst Write, Suspend Burst ADDRESS None External External External External External Next Next Next Next Next Next Current Current Current Current Current Current CE H L L L L L X X H H X H X X H H X H ADSP X L L H H H H H X X H X H H X X H X ADSC L X X L L L H H H H H H H H H H H H ADV X X X X X X L L L L L L H H H H H H WRITE X X X L H H H H H H L L H H H H L L OE DQ X High-Z L Q H High-Z X D L Q H High-Z L Q H High-Z L Q H High-Z X D X D L Q H High-Z L Q H High-Z X D X D NOTE: 1. X means “Don’t Care.” H means logic HIGH. L means logic LOW. 2. For WRITE, L means one or more byte write enable signals (BWa-h) and BWE are LOW or GW is LOW. WRITE = H for all BWx, BWE, GW HIGH. 3. BWa enables WRITEs to DQa’s and DQPa. BWb enables WRITEs to DQb’s and DQPb. BWc enables WRITEs to DQc’s  and DQPc. BWd enables WRITEs to DQd’s and DQPd. BWe enables WRITEs to DQe’s and DQPe. BWf enables WRITEs to DQf’s and DQPf. BWg enables WRITEs to DQg’s and DQPg. BWh enables WRITEs to DQh’s and DQPh. DQPa-DQPh are available on the x72 version. DQPa and DQPb are available on the x18 version.  DQPa-DQPd are available on the x36 version. 4. All inputs except OE and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK. 5. Wait states are inserted by suspending burst. 6. For a WRITE operation following a READ operation, OE must be HIGH before the input data setup time and held HIGH during the input data hold time. 7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up. 8. ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. See WRITE timing diagram for clarification. PARTIAL TRUTH TABLE Function Read Read Write Byte 1 Write All Bytes Write All Bytes 12 GW BWE BWa BWb BWc BWd BWe BWf BWg BWh H H X X X X X X X X H L H H H H H H H H H L L H H H H H H H H L L L L L L L L L L X X X X X X X X X Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A INTERLEAVED BURST ADDRESS TABLE (MODE = Vdd or No Connect) External Address 1st Burst Address 2nd Burst Address 3rd Burst Address A1 A0 A1 A0 A1 A0 A1 A0 00 01 10 11 01 00 11 10 10 11 00 01 11 10 01 00 LINEAR BURST ADDRESS TABLE (MODE = Vss) 0,0 A1', A0' = 1,1     0,1 1,0 ABSOLUTE MAXIMUM RATINGS(1) Symbol Parameter Value Unit Tstg Storage Temperature –55 to +150 °C Pd Power Dissipation 1.6 W Iout Output Current (per I/O) 100 mA Vin, Vout Voltage Relative to Vss for I/O Pins –0.5 to Vddq + 0.5 V Vin Voltage Relative to Vss for –0.5 to Vdd + 0.5 V for Address and Control Inputs Vdd Voltage on Vdd Supply Relative to Vss –0.5 to 4.6 V Notes: 1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. This device contains circuity to protect the inputs against damage due to high static voltages or electric fields; however, precautions may be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. 3. This device contains circuitry that will ensure the output devices are in High-Z at power up. Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 13 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A OPERATING RANGE (IS61LPSXXXXX) Range Commercial Ambient Temperature Vdd Vddq 0°C to +70°C 3.3V + 5% 3.3V / 2.5V + 5% Industrial –40°C to +85°C 3.3V + 5% 3.3V / 2.5V + 5% OPERATING RANGE (IS61VPSXXXXX) Range Commercial Ambient Temperature Vdd Vddq 0°C to +70°C 2.5V + 5% 2.5V + 5% Industrial –40°C to +85°C 2.5V + 5% 2.5V + 5% DC ELECTRICAL CHARACTERISTICS (Over Operating Range) Symbol Parameter Test Conditions Voh Output HIGH Voltage Ioh = –4.0 mA (3.3V) Ioh = –1.0 mA (2.5V) Vol Output LOW Voltage Iol = 8.0 mA (3.3V) Iol = 1.0 mA (2.5V) Vih Input HIGH Voltage Vil Input LOW Voltage Ili Input Leakage Current Vss ≤ Vin ≤ Vdd(1) Ilo Output Leakage Current Vss ≤ Vout ≤ Vddq, OE = Vih 3.3V Min. Max. 2.4 — — 0.4 2.0 -0.3 -5 -5 Vdd + 0.3 0.8 5 5 2.5V Min. Max. 2.0 — — 0.4 1.7 Vdd + 0.3 -0.3 0.7 -5 5 -5 5 Unit V V V V µA µA POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range) Symbol Parameter Icc AC Operating Supply Current Isb Standby Current TTL Input Isbi Standby Current CMOS Input Isb2 Sleep Mode -250 -200 MAX MAX Test Conditions Temp. range x18 x36 x72 x18 x36 x72 Unit Device Selected, Com. 450 450 600 425 425 550 mA OE = Vih, ZZ ≤ Vil, Ind. 500 500 650 475 475 600 All Inputs ≤ 0.2V or ≥ Vdd – 0.2V, Cycle Time ≥ tkc min. Device Deselected, Com. 150 150 150 150 150 150 mA Vdd = Max., Ind. 150 150 150 150 150 150 All Inputs ≤ Vil or ≥ Vih, ZZ ≤ Vil, f = Max. Device Deselected, Com. 110 110 110 110 110 110 mA Vdd = Max., Ind. 125 125 125 125 125 125 Vin ≤ Vss + 0.2V or ≥Vdd – 0.2V f=0 ZZ>Vih Com. 60 60 60 60 60 60 mA Ind. 75 75 75 75 75 75 Note: 1. MODE pin has an internal pullup and should be tied to Vdd or Vss. It exhibits ±100µA maximum leakage current when tied to ≤ Vss + 0.2V or ≥ Vdd – 0.2V. 14 Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A CAPACITANCE(1,2) Symbol Cin Cout Parameter Input Capacitance Input/Output Capacitance Conditions Vin = 0V Vout = 0V Max. 6 8 Unit pF pF Notes: 1. Tested initially and after any design or process changes that may affect these parameters. 2. Test conditions: Ta = 25°C, f = 1 MHz, Vdd = 3.3V. 3.3V I/O AC TEST CONDITIONS Parameter Unit Input Pulse Level 0V to 3.0V Input Rise and Fall Times 1.5 ns Input and Output Timing 1.5V and Reference Level Output Load See Figures 1 and 2 AC TEST LOADS 317 Ω 3.3V ZO = 50Ω Output 50Ω 1.5V Figure 1 Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 OUTPUT 5 pF Including jig and scope 351 Ω Figure 2 15 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A 2.5V I/O AC TEST CONDITIONS Parameter Unit Input Pulse Level 0V to 2.5V Input Rise and Fall Times 1.5 ns Input and Output Timing 1.25V and Reference Level Output Load See Figures 3 and 4 2.5 I/O OUTPUT LOAD EQUIVALENT 317 Ω 2.5V ZO = 50Ω Output 50Ω 1.25V Figure 3 16 OUTPUT 5 pF Including jig and scope 351 Ω Figure 4 Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A READ/WRITE CYCLE SWITCHING CHARACTERISTICS (Over Operating Range) Symbol Parameter fmax Clock Frequency tkc Cycle Time tkh Clock High Time tkl Clock Low Time tkq Clock Access Time tkqx(2) Clock High to Output Invalid tkqlz(2,3) Clock High to Output Low-Z tkqhz(2,3) Clock High to Output High-Z toeq Output Enable to Output Valid toelz(2,3) Output Enable to Output Low-Z toehz(2,3) Output Disable to Output High-Z tas tws tces tavs tds tah twh tceh tavh tdh tpds tpus Address Setup Time Read/Write Setup Time Chip Enable Setup Time Address Advance Setup Time Data Setup Time Address Hold Time Write Hold Time Chip Enable Hold Time Address Advance Hold Time Data Hold Time ZZ High to Power Down ZZ Low to Power Down -250 Min. Max. — 250 4.0 — 1.7 — 1.7 — — 2.6 0.8 — 0.8 — — 2.6 — 2.8 0 — — 1.2 1.2 1.2 1.2 1.2 0.3 0.3 0.3 0.3 0.3 — — 2.6 — — — — — — — — — — 2 2 -200 Min. — 5 2 2 — 1.5 1 — — 0 Max. 200 — — — 3.1 — — 3.0 3.1 — Unit MHz ns ns ns ns ns ns ns ns ns — 1.4 1.4 1.4 1.4 1.4 0.4 0.4 0.4 0.4 0.4 — — 3.0 — — — — — — — — — — 2 2 ns ns ns ns ns ns ns ns ns ns ns cyc cyc Note: 1. Configuration signal MODE is static and must not change during normal operation. 2. Guaranteed but not 100% tested. This parameter is periodically sampled. 3. Tested with load in Figure 2. Integrated Silicon Solution, Inc. — 1-800-379-4774 17 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A READ/WRITE CYCLE TIMING tKC CLK tSS tSH tKH tKL ADSP is blocked by CE inactive ADSP tSS tSH ADSC initiate read ADSC tAVH tAVS Suspend Burst ADV tAS Address tAH RD1 RD3 RD2 tWS tWH tWS tWH GW BWE BWx tCES tCEH tCES tCEH tCES tCEH CE Masks ADSP CE Unselected with CE2 CE2 and CE2 only sampled with ADSP or ADSC CE2 CE2 tOEHZ tOEQ OE DATAOUT tKQX tOEQX tOELZ High-Z 1a 2a 2b 2c tKQLZ 2d tKQHZ tKQ DATAIN High-Z Pipelined Read Single Read 18 Burst Read Unselected Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A WRITE CYCLE TIMING tKC CLK tSS tSH tKH tKL ADSP is blocked by CE inactive ADSP ADSC initiate Write ADSC ADV must be inactive for ADSP Write tAVS tAVH ADV tAS Address tAH WR1 WR3 WR2 tWS tWH tWS tWH tWS tWH GW BWE WR1 BWx tCES tCEH tCES tCEH tCES tCEH tWS tWH WR2 WR3 CE Masks ADSP CE Unselected with CE2 CE2 and CE2 only sampled with ADSP or ADSC CE2 CE2 OE DATAOUT High-Z tDS DATAIN High-Z Single Write tDH 1a BW4-BW1 only are applied to first cycle of WR2 2a 2b 2c 2d Burst Write 3a Write Unselected Integrated Silicon Solution, Inc. — 1-800-379-4774 19 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A SNOOZE MODE ELECTRICAL CHARACTERISTICS Symbol Parameter Isb2 Current during SNOOZE MODE tpds ZZ active to input ignored tpus ZZ inactive to input sampled tzzi ZZ active to SNOOZE current trzzi ZZ inactive to exit SNOOZE current Conditions ZZ ≥ Vih Min. — — 2 — 0 Max. 60 2 — 2 — Unit mA cycle cycle cycle ns SNOOZE MODE TIMING CLK tPDS ZZ setup cycle tPUS ZZ recovery cycle ZZ tZZI Isupply ISB2 tRZZI All Inputs (except ZZ) Deselect or Read Only Deselect or Read Only Normal operation cycle Outputs (Q) High-Z Don't Care 20 Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A IEEE 1149.1 Serial Boundary Scan (JTAG) Test Access Port (TAP) - Test Clock The IS61LPS/VPSxxxxxx products have a serial boundary scan Test Access Port (TAP) in the PBGA package only. (The TQFP package not available.) This port operates in accordance with IEEE Standard 1149.1-1900, but does not include all functions required for full 1149.1 compliance. These functions from the IEEE specification are excluded because they place added delay in the critical speed path of the SRAM. The TAP controller operates in a manner that does not conflict with the performance of other devices using 1149.1 fully compliant TAPs. The TAP operates using JEDEC standard 2.5V I/O logic levels. The test clock is only used with the TAP controller. All inputs are captured on the rising edge of TCK and outputs are driven from the falling edge of TCK. Disabling the JTAG Feature The SRAM can operate without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (Vss) to prevent clocking of the device. TDI and TMS are internally pulled up and may be disconnected. They may alternately be connected to Vdd through a pull-up resistor. TDO should be left disconnected. On power-up, the device will start in a reset state which will not interfere with the device operation. Test Mode Select (TMS) The TMS input is used to send commands to the TAP controller and is sampled on the rising edge of TCK. This pin may be left disconnected if the TAP is not used. The pin is internally pulled up, resulting in a logic HIGH level. Test Data-In (TDI) The TDI pin is used to serially input information to the registers and can be connected to the input of any register. The register between TDI and TDO is chosen by the instruction loaded into the TAP instruction register. For information on instruction register loading, see the TAP Controller State Diagram. TDI is internally pulled up and can be disconnected if the TAP is unused in an application. TDI is connected to the Most Significant Bit (MSB) on any register. tap controller block diagram 0 Bypass Register 2 1 0 Instruction Register TDI Selection Circuitry 31 30 29 . . . Selection Circuitry 2 1 0 2 1 0 TDO Identification Register x . . . . . Boundary Scan Register* TCK TMS TAP CONTROLLER Integrated Silicon Solution, Inc. — 1-800-379-4774 21 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A Test Data Out (TDO) Boundary Scan Register The TDO output pin is used to serially clock data-out from the registers. The output is active depending on the current state of the TAP state machine (see TAP Controller State Diagram). The output changes on the falling edge of TCK and TDO is connected to the Least Significant Bit (LSB) of any register. The boundary scan register is connected to all input and output pins on the SRAM. Several no connect (NC) pins are also included in the scan register to reserve pins for higher density devices. The x36 configuration has a 75-bit-long register and the x18 configuration also has a 75-bit-long register. The boundary scan register is loaded with the contents of the RAM Input and Output ring when the TAP controller is in the Capture-DR state and then placed between the TDI and TDO pins when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE-Z instructions can be used to capture the contents of the Input and Output ring. The Boundary Scan Order tables show the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO. Performing a TAP Reset A Reset is performed by forcing TMS HIGH (Vdd) for five rising edges of TCK. RESET may be performed while the SRAM is operating and does not affect its operation. At power-up, the TAP is internally reset to ensure that TDO comes up in a high-Z state. TAP Registers Registers are connected between the TDI and TDO pins and allow data to be scanned into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction registers. Data is serially loaded into the TDI pin on the rising edge of TCK and output on the TDO pin on the falling edge of TCK. Instruction Register Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO pins. (See TAP Controller Block Diagram)  At power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as previously described. When the TAP controller is in the CaptureIR state, the two least significant bits are loaded with a binary “01” pattern to allow for fault isolation of the board level serial test path. Bypass Register To save time when serially shifting data through registers, it is sometimes advantageous to skip certain states. The bypass register is a single-bit register that can be placed between TDI and TDO pins. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (Vss) when the BYPASS instruction is executed. Scan Register Sizes Register Name Instruction Bypass ID Boundary Scan Bit Size Bit Size Bit Size (x18) (x36) (x72) 3 3 3 1 1 1 32 32 32 75 75 TBD Identification (ID) Register The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded to the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has vendor code and other information described in the Identification Register Definitions table. Identification Register Definitions Instruction Field Revision Number  (31:28) Device Depth  (27:23) Device Width  (22:18) ISSI Device ID  (17:12) ISSI JEDEC ID  (11:1) ID Register Presence  (0) 22 Description Reserved for version number. Defines depth of SRAM. 512K, 1M or 256K Defines width of the SRAM. x72, x36 or x18 Reserved for future use. Allows unique identification of SRAM vendor. Indicate the presence of an ID register. 256K x 72 xxxx 00110 00101 xxxx 0011010101 1 512K x 36 xxxx 00111 00100 xxxxx 00011010101 1 1M x 18 xxxx 01000 00011 xxxxx 00011010101 1 Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A TAP Instruction Set SAMPLE/PRELOAD Eight instructions are possible with the three-bit instruction register and all combinations are listed in the Instruction Code table. Three instructions are listed as RESERVED and should not be used and the other five instructions are described below. The TAP controller used in this SRAM is not fully compliant with the 1149.1 convention because some mandatory instructions are not fully implemented. The TAP controller cannot be used to load address, data or control signals and cannot preload the Input or Output buffers. The SRAM does not implement the 1149.1 commands EXTEST or INTEST or the PRELOAD portion of SAMPLE/ PRELOAD; instead it performs a capture of the Inputs and Output ring when these instructions are executed. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted from the instruction register through the TDI and TDO pins. To execute an instruction once it is shifted in, the TAP controller must be moved into the Update-IR state. SAMPLE/PRELOAD is a 1149.1 mandatory instruction.The PRELOAD portion of this instruction is not implemented, so the TAP controller is not fully 1149.1 compliant. When the SAMPLE/PRELOAD instruction is loaded to the instruction register and the TAP controller is in the Capture-DR state, a snapshot of data on the inputs and output pins is captured in the boundary scan register. It is important to realize that the TAP controller clock operates at a frequency up to 10 MHz, while the SRAM clock runs more than an order of magnitude faster. Because of the clock frequency differences, it is possible that during the Capture-DR state, an input or output will under-go a transition. The TAP may attempt a signal capture while in transition (metastable state).The device will not be harmed, but there is no guarantee of the value that will be captured or repeatable results. To guarantee that the boundary scan register will capture the correct signal value, the SRAM signal must be stabilized long enough to meet the TAP controller’s capture set-up plus hold times (tcs and tch). To insure that the SRAM clock input is captured correctly, designs need a way to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is not an issue, it is possible to capture all other signals and simply ignore the value of the CLK captured in the boundary scan register. Once the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO pins. Note that since the PRELOAD part of the command is not implemented, putting the TAP into the Update to the UpdateDR state while performing a SAMPLE/PRELOAD instruction will have the same effect as the Pause-DR command. EXTEST EXTEST is a mandatory 1149.1 instruction which is to be executed whenever the instruction register is loaded with all 0s. Because EXTEST is not implemented in the TAP controller, this device is not 1149.1 standard compliant. The TAP controller recognizes an all-0 instruction. When an EXTEST instruction is loaded into the instruction register, the SRAM responds as if a SAMPLE/PRELOAD instruction has been loaded. There is a difference between the instructions, unlike the SAMPLE/PRELOAD instruction, EXTEST places the SRAM outputs in a High-Z state. IDCODE The IDCODE instruction causes a vendor-specific, 32bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO pins and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test logic reset state. Bypass When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between the TDI and TDO pins. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board. SAMPLE-Z Reserved The SAMPLE-Z instruction causes the boundary scan register to be connected between the TDI and TDO pins when the TAP controller is in a Shift-DR state. It also places all SRAM outputs into a High-Z state. These instructions are not implemented but are reserved for future use. Do not use these instructions. Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 23 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A Instruction Codes Code Instruction Description 000 EXTEST Captures the Input/Output ring contents. Places the boundary scan register between the TDI and TDO. Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant. 001 IDCODE Loads the ID register with the vendor ID code and places the register between TDI and TDO. This operation does not affect SRAM operation. 010 SAMPLE-Z Captures the Input/Output contents. Places the boundary scan register between TDI and TDO. Forces all SRAM output drivers to a High-Z state. 011 RESERVED Do Not Use: This instruction is reserved for future use. 100 SAMPLE/PRELOAD Captures the Input/Output ring contents. Places the boundary scan register between TDI and TDO. Does not affect the SRAM operation. This instruction does not implement 1149.1 preload function and is therefore not 1149.1 compliant. 101 RESERVED Do Not Use: This instruction is reserved for future use. 110 RESERVED Do Not Use: This instruction is reserved for future use. 111 BYPASS Places the bypass register between TDI and TDO. This operation does not affect SRAM operation. TAP CONTROLLER STATE DIAGRAM Test Logic Reset 1 0 Run Test/Idle 1 Select DR 0 0 1 1 1 Capture DR 0 Shift DR 1 Exit1 DR 0 Select IR 0 1 Exit1 IR 0 Pause DR 0 1 0 1 24 Exit2 DR 1 Update DR 0 Capture IR 0 Shift IR 1 0 Pause IR 1 0 1 1 0 1 0 Exit2 IR 1 Update IR 0 Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A TAP Electrical Characteristics Over the Operating Range(1,2) Symbol Voh1 Voh2 Vol1 Vol2 Vih Vil Ix Notes: Parameter Test Conditions Min. Max. Units Output HIGH Voltage Ioh = –2.0 mA 1.7 — V Output HIGH Voltage Ioh = –100 µA 2.1 — V Output LOW Voltage Iol = 2.0 mA — 0.7 V Output LOW Voltage Iol = 100 µA — 0.2 V Input HIGH Voltage 1.7 Vdd +0.3 V Input LOW Voltage –0.3 0.7 V Input Leakage Current Vss ≤ V I ≤ Vddq –10 10 µA 1. All Voltage referenced to Ground. 2. Overshoot: Vih (AC) ≤ Vdd +1.5V for t ≤ ttcyc/2, Undershoot: Vil (AC) ≤ 0.5V for t ≤ ttcyc/2, Power-up: Vih < 2.6V and Vdd < 2.4V and Vddq < 1.4V for t < 200 ms. TAP AC ELECTRICAL CHARACTERISTICS(1,2) (Over Operating Range) Symbol Parameter Min. Max. Unit ttcyc TCK Clock cycle time 100 — ns ftf TCK Clock frequency — 10 MHz tth TCK Clock HIGH 40 — ns ttl TCK Clock LOW 40 — ns ttmss TMS setup to TCK Clock Rise 10 — ns ttdis TDI setup to TCK Clock Rise 10 — ns tcs Capture setup to TCK Rise 10 — ns ttmsh TMS hold after TCK Clock Rise 10 — ns ttdih TDI Hold after Clock Rise 10 — ns tch Capture hold after Clock Rise 10 — ns ttdov TCK LOW to TDO valid — 20 ns ttdox TCK LOW to TDO invalid 0 — ns Notes: 1. Both tcs and tch refer to the set-up and hold time requirements of latching data from the boundary scan register. 2. Test conditions are specified using the load in TAP AC test conditions. tr/tf = 1 ns. Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 25 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A TAP AC TEST CONDITIONS (2.5V/3.3V) TAP Output Load Equivalent Input pulse levels 0 to 2.5V/0 to 3.0V Input rise and fall times 1ns Input timing reference levels 1.25V/1.5V Output reference levels 1.25V/1.5V Test load termination supply voltage 1.25V/1.5V Vtrig 1.25V/1.5V 50Ω Vtrig TDO Z0 = 50Ω 20 pF GND Tap timing 1 2 tTHTH 3 4 5 6 tTLTH TCK tTHTL tMVTH tTHMX TMS tDVTH tTHDX TDI tTLOV TDO tTLOX DON'T CARE UNDEFINED 26 Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A 209 Boundary Scan Order (256K X 72) Integrated Silicon Solution, Inc. — 1-800-379-4774 27 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A 165 PBGA Boundary Scan Order (x 36) Signal Bump Bit # Name ID 1 MODE 1R 2 A 6N 3 A 11P 4 A 8P 5 A 8R 6 A 9R 7 A 9P 8 A 10P 9 A 10R 10 A 11R 11 ZZ 11H 12 DQa 11N 13 DQa 11M 14 DQa 11L 15 DQa 11K 16 DQa 11J 17 DQa 10M 18 DQa 10L 19 DQa 10K 20 DQa 10J 28 Bit # 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Signal Bump Name ID Bit # DQb 11G 41 DQb 11F 42 DQb 11E 43 DQb 11D 44 DQb 10G 45 DQb 10F 46 DQb 10E 47 DQb 10D 48 DQb 11C 49 NC 11A 50 A 10A 51 A 10B 52 ADV 9A 53 ADSP 9B 54 ADSC 8A 55 OE 8B 56 BWE 7A 57 GW 7B 58 CLK 6B 59 NC 11B 60 Signal Bump Name ID NC 1A CE2 6A BWa 5B BWb 5A BWc 4A BWd 4B CE2 3B CE 3A A 2A A 2B NC 1B DQc 1C DQc 1D DQc 1E DQc 1F DQc 1G DQc 2D DQc 2E DQc 2F DQc 2G Bit # 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Signal Bump Name ID DQd 1J DQd 1K DQd 1L DQd 1M DQd 2J DQd 2K DQd 2L DQd 2M DQd 1N A 3P A 3R A 4R A 4P A1 6P A0 6R Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A 165 PBGA Boundary Scan Order (x 18) Signal Bump Bit # Name ID 1 MODE 1R 2 A 6N 3 A 11P 4 A 8P 5 A 8R 6 A 9R 7 A 9P 8 A 10P 9 A 10R 10 A 11R 11 ZZ 11H 12 NC 11N 13 NC 11M 14 NC 11L 15 NC 11K 16 NC 11J 17 DQa 10M 18 DQa 10L 19 DQa 10K 20 DQa 10J Bit # 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Signal Bump Name ID Bit # DQa 11G 41 DQa 11F 42 DQa 11E 43 DQa 11D 44 DQa 11C 45 NC 10F 46 NC 10E 47 NC 10D 48 NC 10G 49 A 11A 50 A 10A 51 A 10B 52 ADV 9A 53 ADSP 9B 54 ADSC 8A 55 OE 8B 56 BWE 7A 57 GW 7B 58 CLK 6B 59 NC 11B 60 Signal Bump Name ID NC 1A CE2 6A BWa 5B NC 5A BWb 4A NC 4B CE2 3B CE 3A A 2A A 2B NC 1B NC 1C NC 1D NC 1E NC 1F NC 1G DQb 2D DQb 2E DQb 2F DQb 2G Bit # 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Signal Bump Name ID DQb 1J DQb 1K DQb 1L DQb 1M DQb 1N NC 2K NC 2L NC 2M NC 2J A 3P A 3R A 4R A 4P A1 6P A0 6R Integrated Silicon Solution, Inc. — 1-800-379-4774 29 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A ORDERING INFORMATION (3.3V core/2.5V-3.3V I/O) Commercial Range: 0°C to +70°C Configuration 512Kx36 Frequency Order Part Number Package 250 200 IS61LPS51236A-250TQL IS61LPS51236A-250B2 IS61LPS51236A-250B3 IS61LPS51236A-200B2 IS61LPS51236A-200B3 100 TQFP, Lead-free 119 PBGA 165 PBGA 119 PBGA 165 PBGA 250 200 250 IS61LPS102418A-250B2 IS61LPS102418A-250B3 IS61LPS102418A-200B2 IS61LPS102418A-200B3 IS61LPS25672A-250B1 IS61LPS25672A-250B1L 119 PBGA 165 PBGA 119 PBGA 165 PBGA 209 PBGA 209 PBGA, Lead-free 1Mx18 256Kx72 Industrial Range: -40°C to +85°C Configuration 512Kx36 Frequency Order Part Number Package 250 200 IS61LPS51236A-250B2I IS61LPS51236A-250B3I IS61LPS51236A-250B3LI IS61LPS51236A-200TQLI IS61LPS51236A-200B2I IS61LPS51236A-200B2LI IS61LPS51236A-200B3I IS61LPS51236A-200B3LI 119 PBGA 165 PBGA 165 PBGA, Lead-free 100 TQFP, Lead-free 119 PBGA 119 PBGA, Lead-free 165 PBGA 165 PBGA, Lead-free 250 200 250 IS61LPS102418A-250TQLI IS61LPS102418A-250B2I IS61LPS102418A-250B3I IS61LPS102418A-200TQLI IS61LPS102418A-200B2I IS61LPS102418A-200B3I IS61LPS25672A-250B1I 100 TQFP, Lead-free 119 PBGA 165 PBGA 100 TQFP, Lead-free 119 PBGA 165 PBGA 209 PBGA 1Mx18 256Kx72 30 Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A ORDERING INFORMATION (2.5V core/2.5V I/O) Commercial Range: 0°C to +70°C Configuration 512Kx36 Frequency Order Part Number Package 250 200 IS61VPS51236A-250B2 IS61VPS51236A-250B3 IS61VPS51236A-250B3L IS61VPS51236A-200B2 IS61VPS51236A-200B3 119 PBGA 165 PBGA 165 PBGA, Lead-free 119 PBGA 165 PBGA 250 200 250 IS61VPS102418A-250TQL IS61VPS102418A-250B2 IS61VPS102418A-250B3 IS61VPS102418A-200B2 IS61VPS102418A-200B3 IS61VPS25672A-250B1 IS61VPS25672A-250B1L 100 TQFP, Lead-free 119 PBGA 165 PBGA 119 PBGA 165 PBGA 209 PBGA 209 PBGA, Lead-free Order Part Number Package 250 200 IS61VPS51236A-250B2I IS61VPS51236A-250B3I IS61VPS51236A-200TQLI IS61VPS51236A-200B2I IS61VPS51236A-200B3I IS61VPS51236A-200B3LI 119 PBGA 165 PBGA 100 TQFP, Lead-free 119 PBGA 165 PBGA 165 PBGA, Lead-free 250 200 250 IS61VPS102418A-250B2I IS61VPS102418A-250B3I IS61VPS102418A-200B2I IS61VPS102418A-200B3I IS61VPS25672A-250B1I 119 PBGA 165 PBGA 119 PBGA 165 PBGA 209 PBGA 1Mx18 256Kx72 Industrial Range: -40°C to +85°C Configuration 512Kx36 Frequency 1Mx18 256Kx72 Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 31 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A 32 Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 33 34 Package Outline 1. CONTROLLING DIMENSION : MM . NOTE : 08/28/2008 IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 12/10/2007 Package Outline 1. Controlling dimension : mm NOTE : IS61VPS25672A, IS61LPS25672A IS61VPS51236A,  IS61LPS51236A, IS61VPS102418A, IS61LPS102418A Integrated Silicon Solution, Inc. — 1-800-379-4774 Rev. Q 07/19/2017 35
IS61VPS51236A-250B3I
物料型号: - IS61VPS25672A - IS61LPS25672A - IS61VPS51236A - IS61LPS51236A - IS61VPS102418A - IS61LPS102418A

器件简介: 这些器件是高速、低功耗的同步静态RAM,专为通信和网络应用设计,提供突发式高性能内存。

引脚分配: 文档提供了不同封装(如TQFP、PBGA)的引脚分配图,包括地址输入、数据输入/输出、控制信号等。

参数特性: - 内部自定时写周期 - 单独的字节写控制和全局写 - 时钟控制的寄存器地址、数据和控制 - 使用MODE输入控制突发序列 - 三种芯片使能选项,用于简单的深度扩展和地址流水线 - 通用数据输入和数据输出 - 在非选中期间自动进入低功耗模式 - 单周期去选 - 降低功耗待机的Snooze模式 - PBGA封装的JTAG边界扫描 - 多种封装选项,包括100-Pin TQFP、119-ball PBGA、165-ball PBGA和209-ball PBGA - 无铅版本可用

功能详解: - 所有同步输入都通过由单个时钟输入控制的寄存器传递。 - 写周期由时钟输入的上升沿启动,可以是1到4个字节宽。 - 可以通过ADSP或ADSC输入引脚启动突发模式。 - MODE引脚用于选择突发序列顺序,线性突发或交错突发。

应用信息: 这些SRAM适用于需要高速数据存储和检索的应用,如通信设备、网络设备等。
IS61VPS51236A-250B3I 价格&库存

很抱歉,暂时无法提供与“IS61VPS51236A-250B3I”相匹配的价格&库存,您可以联系我们找货

免费人工找货