Advance Technical Information
IXGA28N60A3
IXGP28N60A3
IXGH28N60A3
GenX3TM 600V
IGBT
VCES = 600V
IC110 = 28A
VCE(sat) 1.4V
Ultra Low Vsat PT IGBT for up
to 5kHz Switching
TO-263 (IXGA)
G
E
C (Tab)
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 150°C
TJ = 25°C to 150°C, RGE = 1M
600
600
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
G
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
75
28
170
A
A
A
TO-247 AD (IXGH)
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 10
Clamped Inductive Load
ICM = 48
@VCE VCES
A
PC
TC = 25°C
190
W
-55 ... +150
150
-55 ... +150
°C
°C
°C
G = Gate
E = Emitter
300
260
°C
°C
Features
10..65 / 2.2..14.6
1.13 / 10
N/lb
Nm/lb.in
2.5
3.0
6.0
g
g
g
TJ
TJM
Tstg
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
FC
Md
Mounting Force (TO-263)
Mounting Torque (TO-247 & TO-220)
Weight
TO-263
TO-220
TO-247
TO-220 (IXGP)
G
C
CE
E
C (Tab)
C (Tab)
C
= Collector
Tab = Collector
Optimized for Low Conduction Losses
Square RBSOA
International Standard Packages
Advantages
High Power Density
Extremely Rugged
Low Gate Drive Requirement
Applications
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
600
VGE(th)
IC
= 250A, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 24A, VGE = 15V, Note 1
TJ = 125C
© 2016 IXYS CORPORATION, All Rights Reserved
V
5.0
V
25
250
A
A
100
nA
1.4
V
V
TJ = 125C
IGES
1.3
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
Inrush Current Portection Circuits
DS100725(5/16)
IXGA28N60A3 IXGP28N60A3
IXGH28N60A3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
17
IC = 24A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 24A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
30
S
1790
100
26
pF
pF
pF
66
13
24
nC
nC
nC
18
26
0.7
300
260
2.4
ns
ns
mJ
ns
ns
mJ
20
26
1.4
470
400
4.2
ns
ns
mJ
ns
ns
mJ
0.50
0.21
0.66 °C/W
°C/W
°C/W
Inductive load, TJ = 25°C
IC = 24A, VGE = 15V
VCE = 480V, RG = 10
Note 2
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 125°C
IC = 24A, VGE = 15V
VCE = 480V, RG = 10
Note 2
RthJC
RthCS
RthCS
TO-220
TO-247
TO-220 Outline
Pins:
1 - Gate
3 - Emitter
2 - Collector
TO-247 Outline
D
A
A2
B
E
Q
R
Notes:
S
A
0K M D B M
D2
D1
D
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
0P
0P1
R1
1
2
3
4
IXYS OPTION
L1
C
L
E1
TO-263 Outline
A1
c
b
b2
b4
e
J MCAM
1 - Gate
2,4 - Collector
3 - Emitter
1 - Gate
2,4 - Collector
3 - Emitter
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGA28N60A3 IXGP28N60A3
IXGH28N60A3
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
Fig. 1. Output Characteristics @ TJ = 25ºC
50
300
VGE = 15V
13V
11V
45
40
VGE = 15V
I C - Amperes
9V
35
I C - Amperes
13V
250
30
25
20
7V
200
11V
150
100
15
10
9V
50
5
7V
0
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0
2
4
6
8
1.4
50
VGE = 15V
13V
11V
14
16
125
150
VGE = 15V
1.3
I C = 48A
VCE(sat) - Normalized
I C - Amperes
12
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 125ºC
40
10
VCE - Volts
VCE - Volts
9V
30
7V
20
1.2
1.1
1.0
I C = 24A
0.9
10
0.8
5V
I C = 12A
0.7
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
-50
2.0
-25
0
25
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
4.5
50
75
100
TJ - Degrees Centigrade
Fig. 6. Input Admittance
100
90
TJ = 25ºC
4.0
80
70
I C = 48A
24A
12A
3.0
I C - Amperes
VCE - Volts
3.5
2.5
2.0
60
50
40
TJ = 125ºC
25ºC
- 40ºC
30
1.5
20
1.0
10
0.5
0
5
6
7
8
9
10
11
12
VGE - Volts
© 2016 IXYS CORPORATION, All Rights Reserved
13
14
15
4.0
4.5
5.0
5.5
6.0
6.5
VGE - Volts
7.0
7.5
8.0
8.5
9.0
IXGA28N60A3 IXGP28N60A3
IXGH28N60A3
Fig. 7. Transconductance
Fig. 8. Gate Charge
45
16
40
I C = 24A
TJ = - 40ºC
25ºC
125ºC
35
30
I G = 10mA
12
VGE - Volts
g f s - Siemens
VCE = 300V
14
25
20
15
10
8
6
4
10
2
5
0
0
0
10
20
30
40
50
60
70
80
90
100
0
10
20
I C - Amperes
30
40
50
60
70
QG - NanoCoulombs
Fig. 9. Reverse-Bias Safe Operating Area
Fig. 10. Capacitance
10,000
50
f = 1 MHz
Capacitance - PicoFarads
Cies
I C - Amperes
40
1,000
30
20
TJ = 125ºC
10
Coes
100
RG = 10
dv / dt < 10V / ns
Cres
0
10
100
150
200
250
300
350
400
450
500
550
600
650
0
5
10
VCE - Volts
15
20
25
30
35
40
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z (th)JC - K / W
1
0.1
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
10
IXGA28N60A3
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
Eoff
9
8
4.0
VCE = 480V
3.5
I C =40A
6
3.0
5
2.5
I C = 20A
4
2.0
3
1.5
1
10
30
50
70
90
110
130
I C = 40A
VCE = 480V
5
I C = 20A
1.2
2
0.8
1
0.5
150
0
I C = 10A
25
35
45
540
2.8
520
4
1.6
TJ = 125ºC
1.2
2
0.8
1
0.4
TJ = 25ºC
0
Eon - MilliJoules
2.0
15
20
25
30
35
tfi
1200
580
460
900
I C = 10A, 20A, 40A
440
700
400
600
380
500
460
360
420
320
380
280
340
240
300
TJ = 25ºC
260
160
220
20
25
400
I C = 10A
30
50
70
90
110
300
150
130
30
I C - Amperes
© 2016 IXYS CORPORATION, All Rights Reserved
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
tfi
480
35
40
td(off)
520
RG = 10Ω, VGE = 15V
VCE = 480V
440
560
480
400
440
I C = 40A, 20A, 10A
360
400
320
360
280
320
240
280
200
25
35
45
55
65
75
85
TJ - Degrees Centigrade
95
105
115
240
125
t d(off) - Nanoseconds
TJ = 125ºC
15
800
420
540
500
10
1100
1000
520
t d(off) - Nanoseconds
t f i - Nanoseconds
td(off)
VCE = 480V
200
1300
VCE = 480V
10
620
440
400
0.0
125
RG - Ohms
RG = 10Ω, VGE = 15V
480
115
340
t f i - Nanoseconds
tfi
105
480
40
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
520
95
td(off)
I C - Amperes
560
85
TJ = 125ºC, VGE = 15V
360
0.0
10
75
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
500
2.4
5
3
65
t d(off) - Nanoseconds
VCE = 480V
6
Eoff - MilliJoules
Eon
RG = 10ΩVGE = 15V
3.2
t f i - Nanoseconds
Eoff
55
0.4
TJ - Degrees Centigrade
Fig. 14. Inductive Switching
Energy Loss vs. Collector Current
7
1.6
3
RG - Ohms
8
2.4
2.0
4
1.0
2
2.8
RG = 10ΩVGE = 15V
6
I C = 10A
3.2
Eon
E on - MilliJoules
7
Eoff
7
E on - MilliJoules
Eoff - MilliJoules
4.5
TJ = 125ºC , VGE = 15V
Fig. 13. Inductive Switching
Energy Loss vs. Junction Temperature
8
5.0
Eon
Eoff - MilliJoules
10
IXGP28N60A3
IXGH28N60A3
IXGA28N60A3 IXGP28N60A3
IXGH28N60A3
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
130
tri
130
50
td(on)
45
TJ = 125ºC, VGE = 15V
110
I C = 40A
40
I C = 20A
50
30
50
50
70
90
110
130
10
150
45
18
15
17
16
I C = 10A
25
35
45
55
65
75
85
95
105
115
15
125
22
TJ = 125ºC, 25ºC
21
30
20
25ºC < TJ < 125ºC
25
19
20
18
15
17
10
t d(on) - Nanoseconds
t r i - Nanoseconds
20
23
VCE = 480V
35
19
I C = 20A
24
td(on)
RG = 10 , VGE = 15V
40
25
20
TJ - Degrees Centigrade
Fig. 20. Inductive Turn-on
Switching Times vs. Collector Current
tri
VCE = 480V
30
5
RG - Ohms
50
21
RG = 10, VGE = 15V
10
10
30
35
td(on)
30
I C = 10A
10
t r i - Nanoseconds
t r i - Nanoseconds
70
22
tri
t d(on) - Nanoseconds
70
t d(on) - Nanoseconds
90
I C = 40A
24
23
110
VCE = 480V
90
Fig. 19. Inductive Turn-on
Switching Times vs. Junction Temperature
16
10
15
20
25
30
35
40
I C - Amperes
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXG_28N60A3 (45) 7-02-08-A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.