IXGR60N60C3C1
GenX3TM 600V IGBT
w/ SiC Anti-Parallel
Diode
VCES
IC110
VCE(sat)
tfi(typ)
(Electrically Isolated Back Surface)
=
=
≤£
=
600V
30A
2.5V
50ns
High Speed PT IGBT for 40-100kHz Switching
ISOPLUS247TM
Symbol
Test Conditions
Maximum Ratings
VCES
TJ = 25°C to 150°C
600
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
600
V
VGES
Continuous
±20
V
VGEM
Transient
±30
V
IC25
TC = 25°C (Limited by leads)
75
A
IC110
TC = 110°C
30
A
IF110
TC = 110°C
13
A
ICM
TC = 25°C, 1ms
260
A
IA
EAS
TC = 25°C
TC = 25°C
40
400
A
mJ
SSOA
VGE = 15V, TVJ = 125°C, RG = 3Ω
ICM = 125
A
(RBSOA)
Clamped Inductive Load
PC
TC = 25°C
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
2500
3000
V~
V~
20..120/4.5..27
N/lb
VISOL
50/60 Hz, RMS, t = 1minute
IISOL < 1mA
t = 10 s
FC
Mounting Force
TL
Maximum Lead Temperature for Soldering
300
°C
TSOLD
1.6mm (0.062 in.) from Case for 10s
260
°C
5
g
Weight
E
Isolated Tab
C = Collector
Features
z
z
170
C
G = Gate
E = Emitter
z
@ VCE ≤ VCES
TJ
G
z
z
z
z
z
Silicon Chip on Direct-Copper Bond
(DCB) Substrate
Optimized for Low Switching Losses
Square RBSOA
Isolated Mounting Surface
Anti-Parallel Ultra Fast Diode
High Speed Silicon Carbide Schottky
Co-Pack Diode
- No Reverse Recovery
2500V Electrical Isolation
Avalanche Rated
Advantages
z
z
High Power Density
Low Gate Drive Requirement
Applications
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
VGE(th)
IC = 250μA, VCE = VGE
ICES
VCE = VCES, VGE = 0V
z
Characteristic Values
Min.
Typ.
Max.
3.0
TJ = 125°C
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC = 40A, VGE = 15V, Note 1
TJ = 125°C
© 2010 IXYS CORPORATION, All Rights Reserved
2.2
1.7
z
5.5
V
50
1
μA
mA
±100
nA
2.5
V
V
z
z
z
z
z
z
High Frequency Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100098B(01/10)
IXGR60N60C3C1
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
23
IC = 40A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
38
S
2810
210
80
pF
pF
pF
115
43
22
nC
nC
nC
24
ns
40
0.83
ns
mJ
Qg
Qge
Qgc
td(on)
IC = 50A, VGE = 15V, VCE = 0.5 • VCES
Inductive Load, TJ = 25°C
tri
Eon
IC = 40A, VGE = 15V
td(off)
VCE = 480V, RG = 3Ω
70
tfi
Note 2
50
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
ISOPLUS247 (IXGR) Outline
0.45
Inductive Load, TJ = 125°C
IC = 40A, VGE = 15V
VCE = 480V, RG = 3Ω
Note 2
RthJC
RthCS
110
ns
ns
0.80
mJ
23
39
0.78
112
86
0.80
ns
ns
mJ
ns
ns
mJ
0.15
0.73 °C/W
°C/W
Reverse Diode (SiC)
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
VF
IF = 20A, VGE = 0V, Note 1
Characteristic Values
Min.
Typ.
Max.
1.65
1.80
TJ = 125°C
RthJC
Notes:
2.10
V
V
1.75 °C/W
1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
2. Switching times & energy losses may increase for higher VCE(Clamp), TJ or RG.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or moreof the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGR60N60C3C1
Fig. 2. Extended Output Characteristics @ T J = 25ºC
Fig. 1. Output Characteristics @ T J = 25ºC
300
80
VGE = 15V
13V
11V
70
250
60
11V
9V
IC - Amperes
IC - Amperes
VGE = 15V
13V
50
40
30
7V
200
150
9V
100
20
7V
50
10
5V
5V
0
0
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
0
3.2
2
4
6
12
14
16
1.2
80
VGE = 15V
13V
11V
70
VGE = 15V
1.1
I
60
9V
VCE(sat) - Normalized
IC - Amperes
10
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ T J = 125ºC
50
40
7V
30
20
10
C
= 80A
1.0
0.9
I
C
= 40A
0.8
0.7
I
0.6
5V
0
C
= 20A
0.5
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
25
50
75
VCE - Volts
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
160
6.0
TJ = 25ºC
5.5
140
5.0
120
I
4.5
C
= 80A
40A
20A
IC - Amperes
VCE - Volts
8
VCE - Volts
VCE - Volts
4.0
3.5
100
60
3.0
40
2.5
20
2.0
TJ = 125ºC
25ºC
- 40ºC
80
0
6
7
8
9
10
11
12
VGE - Volts
© 2010 IXYS CORPORATION, All Rights Reserved
13
14
15
4.0
4.5
5.0
5.5
6.0
6.5
7.0
VGE - Volts
7.5
8.0
8.5
9.0
9.5
IXGR60N60C3C1
Fig. 7. Transconductance
Fig. 8. Gate Charge
70
16
TJ = - 40ºC
VGE - Volts
125ºC
40
I C = 40A
I G = 10 mA
12
25ºC
50
g f s - Siemens
VCE = 300V
14
60
30
20
10
8
6
4
10
2
0
0
0
20
40
60
80
100
120
140
160
0
10
20
30
IC - Amperes
40
50
60
70
80
90
100
110
120
QG - NanoCoulombs
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
140
10,000
Capacitance - PicoFarads
120
Cies
100
IC - Amperes
1,000
Coes
100
80
60
40
TJ = 125ºC
20
RG = 3Ω
dv / dt < 10V / ns
Cres
f = 1 MHz
10
0
5
10
15
20
25
30
35
40
0
100
150
200
250
300
VCE - Volts
350
400
450
500
550
600
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
10
IXGR60N60C3C1
Fig. 12. Inductive Switching Energy Loss
vs. Gate Resistance
Fig. 13. Inductive Switching Energy Loss
vs. Collector Current
4.5
Eoff
Eon -
3.5
VCE = 480V
----
C
2.5
= 80A
2.0
2.0
1.5
1.5
1.0
1.0
I C = 40A
0.5
7
8
2.0
TJ = 125ºC, 25ºC
1.5
1.0
1.0
0.5
0.5
9
10
11
12
13
14
0.0
20
15
25
30
35
40
4.0
3.5
2.5
I C = 80A
2.0
2.0
1.5
1.5
1.0
140
t f - Nanoseconds
2.5
0.5
0.0
75
85
95
105
115
240
VCE = 480V
220
120
180
110
I
C
160
= 80A
100
140
I
90
0.0
125
C
= 40A
100
70
80
60
60
3
4
5
6
7
8
200
120
80
100
60
80
TJ = 25ºC
40
0
20
45
50
13
14
15
td(off) - - - -
135
RG = 3Ω , VGE = 15V
VCE = 480V
120
120
100
105
I C = 80A
80
90
I C = 40A
60
75
40
60
60
20
40
t f - Nanoseconds
t f - Nanoseconds
TJ = 125ºC
35
12
55
60
65
IC - Amperes
© 2010 IXYS CORPORATION, All Rights Reserved
70
75
80
20
25
35
45
55
65
75
85
TJ - Degrees Centigrade
95
105
115
45
125
t d(off) - Nanoseconds
140
30
tf
140
t d(off) - Nanoseconds
VCE = 480V
25
11
150
160
120
20
10
160
180
RG = 3Ω , VGE = 15V
40
9
Fig. 17. Inductive Turn-off Switching Times
vs. Junction Temperature
td(off) - - - -
100
120
80
RG - Ohms
180
140
260
TJ = 125ºC, VGE = 15V
Fig. 16. Inductive Turn-off Switching Times
vs. Collector Current
160
80
td(off) - - - -
TJ - Degrees Centigrade
tf
75
200
0.5
I C = 40A
65
70
130
1.0
55
65
t d(off) - Nanoseconds
3.0
45
tf
150
VCE = 480V
35
60
280
160
Eon - MilliJoules
E off - MilliJoules
----
RG = 3Ω , VGE = 15V
25
55
170
4.0
3.0
50
Fig. 15. Inductive Turn-off Switching Times
vs. Gate Resistance
Fig. 14. Inductive Switching Energy Loss
vs. Junction Temperature
3.5
45
IC - Amperes
RG - Ohms
Eon
1.5
0.0
0.0
6
2.0
0.5
0.0
Eoff
2.5
E on - MilliJoules
I
E on - MilliJoules
2.5
5
Eon
RG = 3Ω , VGE = 15V
VCE = 480V
3.0
4
Eoff
2.5
3.5
3.0
3
3.0
4.0
---
TJ = 125ºC , VGE = 15V
E off - MilliJoules
4.0
E off - MilliJoules
3.0
4.5
IXGR60N60C3C1
Fig. 18. Inductive Turn-on Switching Times
vs. Gate Resistance
Fig. 19. Inductive Turn-on Switching Times
vs. Collector Current
140
td(on) - - - -
I
C
= 80A
80
35
I
60
C = 40A
20
3
4
5
6
7
8
9
10
11
12
13
14
VCE = 480V
100
28
TJ = 25ºC, 125ºC
80
40
22
25
20
20
20
0
18
20
15
25
30
35
40
140
65
70
75
80
28
I C = 80A
26
60
24
30
TJ = 125ºC
25
20
15
= 40A
40
TJ = 25ºC
35
IF - Amperes
100
40
t d(on) - Nanoseconds
t r - Nanoseconds
60
45
30
VCE = 480V
C
55
Fig. 21. Forward Current vs. Forward Voltage
td(on) - - - -
RG = 3Ω , VGE = 15V
I
50
50
32
80
45
IC - Amperes
Fig. 20. Inductive Turn-on Switching Times
vs. Junction Temperature
tr
26
24
RG - Ohms
120
30
60
30
40
td(on) - - - -
t d(on) - Nanoseconds
40
tr
RG = 3Ω , VGE = 15V
t d(on) - Nanoseconds
VCE = 480V
100
32
120
45
TJ = 125ºC, VGE = 15V
t r - Nanoseconds
tr
120
t r - Nanoseconds
140
50
10
22
5
20
25
35
45
55
65
75
85
95
105
115
20
125
0
0.0
0.5
1.0
TJ - Degrees Centigrade
1.5
2.0
2.5
3.0
VF - Volts
Fig. 22. Maximum Transient Thermal Impedance for Diodes
Z(th)JC - ºC / W
10.0
1.0
0.1
0.001
0.01
0.1
1
10
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_60N60C3C1(6D)01-15-10-A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.