IXGR72N60A3H1
GenX3TM 600V IGBT
w/Diode
VCES
IC110
VCE(sat)
tfi(typ)
(Electrically Isolated Tab)
=
=
£
=
600V
52A
1.45V
250ns
Ultra-Low Vsat PT IGBT for up to
5kHz Switching
ISOPLUS247TM
Symbol
Test Conditions
Maximum Ratings
VCES
TJ = 25C to 150C
600
V
VCGR
TJ = 25C to 150C, RGE = 1M
600
V
VGES
Continuous
20
V
VGEM
Transient
30
V
IC25
TC = 25C
75
A
IC110
TC = 110C
52
A
IF110
TC = 110C
32
A
ICM
TC = 25C, 1ms
400
A
SSOA
VGE = 15V, TVJ = 125C, RG = 3
ICM = 150
A
(RBSOA)
Clamped Inductive Load
VCE VCES
PC
TC = 25C
Isolated Tab
E
G = Gate
E = Emitter
W
-55 ... +150
C
TJM
150
C
Tstg
-55 ... +150
C
2500
V~
20..120/4.5..27
N/lb
VISOL
50/60 Hz, RMS, t = 1minute
FC
Mounting Force
TL
Maximum Lead Temperature for Soldering
300
°C
TSOLD
1.6mm (0.062 in.) from Case for 10s
260
°C
5
g
Weight
C
C
= Collector
Features
200
TJ
G
Silicon Chip on Direct-Copper Bond
(DCB) Substrate
Isolated Mounting Surface
2500V Electrical Isolation
Optimized for Low Conduction Losses
Square RBSOA
Anti-Parallel Ultra Fast Diode
International Standard Package
Advantages
High Power Density
Low Gate Drive Requirement
Applications
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
VGE(th)
IC
ICES
VCE = VCES, VGE = 0V
IGES
VCE = 0V, VGE = 20V
VCE(sat)
IC
Characteristic Values
Min.
Typ.
Max.
= 250A, VCE = VGE
3.0
5.0
V
300
5
A
mA
100
nA
1.45
V
TJ = 125C
= 60A, VGE = 15V, Note 1
© 2014 IXYS CORPORATION, All Rights Reserved
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
Inrush Current Protection Circuits
DS100143B(01/14)
IXGR72N60A3H1
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
gfs
Characteristic Values
Min.
Typ.
Max.
IC = 60A, VCE = 10V, Note 1
48
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
75
S
6600
360
80
pF
pF
pF
230
40
80
nC
nC
nC
31
ns
34
1.4
ns
mJ
Qg
Qge
Qgc
IC = 60A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Inductive load, TJ = 25C
IC = 50A, VGE = 15V
VCE = 480V, RG = 3
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
ISOPLUS247 (IXGR) Outline
Inductive load, TJ = 125C
IC = 50A, VGE = 15V
VCE = 480V, RG = 3
RthJC
RthCS
320
ns
250
ns
3.5
mJ
29
34
2.6
510
375
6.5
ns
ns
mJ
ns
ns
mJ
0.15
0.62 C/W
C/W
1
2
3
- Gate
- Collector
- Emitter
Reverse Diode (FRED)
(TJ = 25°C, Unless Otherwise Specified)
Symbol
Test Conditions
Characteristic Values
Min.
Typ.
Max.
VF
IF = 60A, VGE = 0V, Note 1
IRM
IF = 60A, VGE = 0V,
TJ = 100°C
-diF/dt = 200A/μs, VR = 300V
IF = 60A, -di/dt = 200A/μs, VR = 300V, TJ = 100°C
trr
1.6
1.4
TJ = 150°C
V
V
8.3
A
140
ns
RthJC
Note 1.
2.3
1.8
0.8 °C/W
Pulse test, t 300s, duty cycle, d 2%.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or moreof the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGR72N60A3H1
Fig. 1. Output Characteristics @ TJ = 25ºC
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
120
VGE = 15V
13V
11V
240
9V
80
I C - Amperes
I C - Amperes
100
VGE = 15V
13V
11V
300
60
7V
40
180
9V
120
7V
60
20
0
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0
1
2
3
4
120
7
8
100
125
150
7.0
7.5
8.0
1.4
VGE = 15V
13V
11V
9V
VGE = 15V
1.3
VCE(sat) - Normalized
100
I C - Amperes
6
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 125ºC
80
60
7V
40
20
I C = 120A
1.2
1.1
I C = 60A
1.0
0.9
0.8
5V
I C = 30A
0.7
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
-50
1.8
-25
0
VCE - Volts
25
50
75
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
200
3.2
180
TJ = 25ºC
2.8
160
140
I C - Amperes
I C = 120A
60A
30A
2.4
VCE - Volts
5
VCE - Volts
VCE - Volts
2.0
1.6
TJ = 125ºC
25ºC
- 40ºC
120
100
80
60
40
1.2
20
0.8
0
5
7
9
11
VGE - Volts
© 2014 IXYS CORPORATION, All Rights Reserved
13
15
4.0
4.5
5.0
5.5
6.0
VGE - Volts
6.5
IXGR72N60A3H1
Fig. 7. Transconductance
Fig. 8. Gate Charge
16
TJ = - 40ºC
120
VCE = 300V
14
25ºC
80
I C = 60A
I G = 10mA
12
VGE - Volts
g f s - Siemens
100
125ºC
60
10
8
6
40
4
20
2
0
0
0
20
40
60
80
100
120
140
160
180
200
0
40
80
I C - Amperes
160
200
240
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
160
100,000
f = 1 MHz
140
Cies
10,000
120
I C - Amperes
Capacitance - PicoFarads
120
QG - NanoCoulombs
1,000
Coes
100
Cres
100
80
60
40
TJ = 125ºC
20
RG = 3Ω
dv / dt < 10V / ns
0
10
0
5
10
15
20
25
30
35
40
100
150
200
250
300
350
400
450
500
550
600
650
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z (th)JC - ºC / W
1
0.1
0.01
0.0001
0.001
0.01
0.1
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
1
10
IXGR72N60A3H1
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
9
18
16
8
16
Eoff
7
14
VCE = 480V
I C = 100A
Eon -
6
---
TJ = 125ºC , VGE = 15V
10
5
VCE = 480V
8
4
I C = 50A
Eon
6.00
5.25
TJ = 125ºC
12
4.50
10
3.75
8
3.00
TJ = 25ºC
3
4
2
4
1.50
1
2
0.75
0
0
I C = 25A
0
0
5
10
15
20
25
30
35
6
20
30
40
50
RG - Ohms
18
----
VCE = 480V
14
10
4
8
3
I C = 50A
6
2
4
2
2
I C = 25A
0
35
45
55
65
75
85
95
105
115
900
I C = 50A
800
369
1
363
0
125
360
700
500
400
5
10
15
530
360
TJ = 125ºC
450
RG = 3Ω, VGE = 15V
VCE = 480V
410
280
370
260
330
TJ = 25ºC
220
50
60
70
25
30
35
80
I C - Amperes
© 2014 IXYS CORPORATION, All Rights Reserved
90
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
580
540
500
I C = 25A, 50A, 100A
340
460
320
420
300
380
280
340
tfi
260
290
240
250
100
220
td(off) - - - -
RG = 3Ω, VGE = 15V
260
VCE = 480V
25
35
45
55
65
75
85
TJ - Degrees Centigrade
95
105
300
115
220
125
t d(off) - Nanoseconds
490
td(off) - - - -
t d(off) - Nanoseconds
340
t f i - Nanoseconds
380
40
20
RG - Ohms
570
30
600
I C = 25A
0
380
20
1000
I C = 100A
372
400
240
1200
375
610
300
1300
1100
378
400
320
1400
td(off) - - - -
381
366
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
tfi
0.00
100
VCE = 480V
TJ - Degrees Centigrade
360
90
t d(off) - Nanoseconds
5
E on - MilliJoules
I C = 100A
25
80
TJ = 125ºC, VGE = 15V
384
5
12
tfi
387
6
RG = 3ΩVGE = 15V
t f i - Nanoseconds
16
Eon
70
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
390
7
Eoff
60
2.25
I C - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
Eoff - MilliJoules
----
RG = 3ΩVGE = 15V
6
2
t f i - Nanoseconds
6.75
E on - MilliJoules
Eoff
Eon - MilliJoules
12
Eoff - MilliJoules
18
14
E off - MilliJoules
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
IXGR72N60A3H1
td(on) -
tri
110
120
---
110
TJ = 125ºC , VGE = 15V
100
VCE = 480V
80
70
70
60
I C = 50A
50
I C = 25A
50
30
29
20
28
27
10
10
0
25
30
35
20
RG - Ohms
90
35
34
80
33
td(on) -
tri
---
RG = 3, VGE = 15V
60
32
31
VCE = 480V
50
30
40
29
I C = 50A
30
t d(on) - Nanoseconds
I C = 100A
70
28
I C = 25A
20
27
10
25
35
45
55
65
75
30
40
50
60
70
I C - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
100
t r i - Nanoseconds
30
20
20
85
95
105
115
26
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
32
40
20
15
TJ = 125ºC
31
30
10
33
50
30
5
34
VCE = 480V
60
40
0
TJ = 25ºC
RG = 3Ω, VGE = 15V
70
40
10
td(on) - - - -
80
90
26
100
t d(on) - Nanoseconds
80
t d(on) - Nanoseconds
90
I C = 100A
35
tri
80
100
90
60
90
t r i - Nanoseconds
120
t r i - Nanoseconds
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
IXGR72N60A3H1
Fig. 21 Forward Current IF vs. VF
Fig. 24 Typ. Dynamic Parameters
Qrr, IRM
Fig. 22 Typ. Reverse Recovery
Charge Qrr
Fig. 23 Typ. Peak Reverse
Current IRM
Fig. 25 Typ Recovery Time trr
Z(th)JC - [ ºC / W ]
1.00
0.10
0.01
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width [s]
Fig. 26 Maximum Transient Thermal Impedance Junction to Case (for Diode)
© 2014 IXYS CORPORATION, All Rights Reserved
IXYS REF: G_72N60A3(76)04-23-09-C
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.