IXGR72N60B3H1
GenX3TM 600V
IGBT w/ Diode
VCES
IC110
VCE(sat)
tfi(typ)
(Electrically Isolated Tab)
=
=
£
=
600V
40A
1.80V
92ns
Medium Speed Low Vsat PT IGBT
ISOPLUS247TM
for 5-40 kHz Switching
Symbol
Test Conditions
Maximum Ratings
VCES
TJ = 25C to 150C
600
V
VCGR
TJ = 25C to 150C, RGE = 1M
600
V
VGES
Continuous
20
V
VGEM
Transient
30
V
IC25
TC = 25C
80
A
IC110
TC = 110C
40
A
IF110
TC = 110C
34
A
ICM
TC = 25C, 1ms
450
A
SSOA
VGE = 15V, TVJ = 125C, RG = 3
ICM = 240
A
(RBSOA)
Clamped Inductive Load
VCE VCES
PC
TC = 25C
W
-55 ... +150
C
TJM
150
C
Tstg
-55 ... +150
C
2500
V~
20..120/4.5..27
N/lb
VISOL
50/60 Hz, 1 Minute
FC
Mounting Force
TL
Maximum Lead Temperature for Soldering
300
°C
TSOLD
1.6mm (0.062 in.) from Case for 10s
260
°C
5
g
Weight
C
Isolated Tab
E
G = Gate
E = Emitter
C
= Collector
Features
200
TJ
G
Silicon Chip on Direct-Copper Bond
(DCB) Substrate
Isolated Mounting Surface
Optimized for Low Conduction and
Switching Losses
2500V~ Electrical Isolation
Square RBSOA
Anti-Parallel Ultra Fast Diode
Advantages
High Power Density
Low Gate Drive Requirement
Applications
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
VGE(th)
IC
ICES
VCE = VCES, VGE = 0V
Characteristic Values
Min.
Typ.
Max.
= 250A, VCE = VGE
3.0
5.0
V
300
5
A
mA
100
nA
TJ = 125C
IGES
VCE = 0V, VGE = 20V
VCE(sat)
IC = 60A, VGE = 15V, Note 1
IC = 120A
© 2016 IXYS CORPORATION, All Rights Reserved
1.50
1.75
1.80
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
V
V
DS99875C(01/16)
IXGR72N60B3H1
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
gfs
Characteristic Values
Min.
Typ.
Max.
IC = 50A, VCE = 10V, Note 1
45
76
ISOPLUS247 (IXGR) Outline
A
A2
S
E1
E
D2
Q
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
6800
576
80
pF
pF
pF
225
40
82
nC
nC
nC
Qg
Qge
Qgc
IC = 60A, VGE = 15V, VCE = 0.5 • VCES
td(off)
tfi
Inductive load, TJ = 25°C
IC = 50A, VGE = 15V
VCE = 480V, RG = 3
Note 2
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
D1
D3
1
2
3
L1
L
2x b2
3x b
c
b4
3x e
A1
td(on)
tri
Eon
R
D
Inductive load, TJ = 125°C
IC = 50A, VGE = 15V
VCE = 480V, RG = 3
Note 2
RthJC
RthCS
31
ns
33
1.4
ns
mJ
152
240
ns
92
150
ns
1.0
2.0
mJ
29
34
2.7
228
142
2.2
ns
ns
mJ
ns
ns
mJ
0.15
0.62 C/W
C/W
W
1
2
3
- Gate
- Collector
- Emitter
Reverse Diode (FRED)
(Symbol Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
VF
IF = 60A, VGE = 0V, Note 1
IRM
IF = 60A, VGE = 0V,
TJ = 100°C
-diF/dt = 200A/μs, VR = 300V
IF = 60A, -di/dt = 200A/μs, VR = 300V, TJ = 100°C
trr
TJ = 150°C
1.40
V
V
8.3
A
140
ns
RthJC
Notes:
2.45
1.80
0.80 °C/W
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(Clamp), TJ or RG.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or moreof the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGR72N60B3H1
Fig. 1. Output Characteristics @ TJ = 25ºC
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
120
VGE = 15V
13V
11V
100
250
9V
80
60
I C - Amperes
I C - Amperes
VGE = 15V
13V
11V
300
7V
40
9V
200
150
100
20
7V
50
0
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
0
2.4
1
2
3
1.3
120
VGE = 15V
13V
11V
9V
6
7
8
100
125
150
7.0
7.5
8.0
VGE = 15V
1.2
VCE(sat) - Normalized
I C - Amperes
5
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 125ºC
100
4
VCE - Volts
VCE - Volts
80
7V
60
40
I C = 120A
1.1
I C = 60A
1.0
0.9
I C = 30A
0.8
20
5V
0.7
0
0.0
0.5
1.0
1.5
2.0
-50
2.5
-25
0
25
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
4.5
160
I C = 120A
60A
30A
140
I C - Amperes
VCE - Volts
75
Fig. 6. Input Admittance
180
TJ = 25ºC
4.0
3.5
50
TJ - Degrees Centigrade
VCE - Volts
3.0
2.5
120
100
80
TJ = 125ºC
25ºC
- 40ºC
60
2.0
40
1.5
20
1.0
0
5
6
7
8
9
10
11
VGE - Volts
© 2016 IXYS CORPORATION, All Rights Reserved
12
13
14
15
4.0
4.5
5.0
5.5
6.0
VGE - Volts
6.5
IXGR72N60B3H1
Fig. 7. Transconductance
Fig. 8. Gate Charge
16
TJ = - 40ºC
120
VCE = 300V
14
I G = 10mA
12
25ºC
80
V GE - Volts
g f s - Siemens
100
I C = 60A
125ºC
60
10
8
6
40
4
20
2
0
0
0
20
40
60
80
100
120
140
160
180
200
0
20
40
60
I C - Amperes
100
120
140
160
180
200
220
240
QG - NanoCoulombs
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
280
10,000
Cies
240
200
1,000
I C - Amperes
Capacitance - PicoFarads
80
Coes
100
160
120
80
TJ = 125ºC
Cres
RG = 3Ω
dv / dt < 10V / ns
40
f = 1 MHz
0
10
0
5
10
15
20
25
30
35
40
100
200
300
400
500
600
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z (th)JC - ºC / W
1
0.1
0.01
0.0001
0.001
0.01
0.1
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
1
10
IXGR72N60B3H1
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
8
9
7
7
8
6
I C =100A
7
4
Eon
5
TJ = 125ºC , VGE = 15V
I C = 50A
VCE = 480V
3
2
4
E off - MilliJoules
6
Eoff
1
5
10
15
20
25
30
35
40
45
50
4
4
3
3
TJ = 25ºC
20
55
30
40
50
240
6
6
220
4
Eon
3
I C = 50A
2
E on - MilliJoules
E off - MilliJoules
5
4
RG = 3ΩVGE = 15V
2
1
0
35
45
55
65
75
85
95
105
115
1300
I C = 25A, 50A, 100A
1000
I C = 100A
180
850
160
700
I C = 50A
140
550
400
100
0
5
10
15
t f i - Nanoseconds
55
245
220
180
175
110
160
TJ = 25ºC
70
70
50
200
130
60
100
45
235
205
50
40
260
190
40
35
220
150
30
30
80
I C - Amperes
© 2016 IXYS CORPORATION, All Rights Reserved
90
230
I C = 25A, 50A, 100A
160
215
140
200
120
185
100
145
80
130
100
60
tri
170
td(off)
RG = 3Ω, VGE = 15V
155
VCE = 480V
25
35
45
55
65
75
85
TJ - Degrees Centigrade
95
105
115
140
125
t d(off) - Nanoseconds
RG = 3Ω, VGE = 15V
VCE = 480V
20
25
250
t d(off) - Nanoseconds
td(off)
90
20
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
t f i - Nanoseconds
TJ = 125ºC
170
250
TJ = 125ºC, VGE = 15V
VCE = 480V
80
0
125
td(off)
RG - Ohms
230
tfi
tf i
I C = 25A
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
190
1150
200
TJ - Degrees Centigrade
210
0
100
90
120
1
I C = 25A
25
80
t d(off) - Nanoseconds
I C = 100A
t f i - Nanoseconds
7
VCE = 480V
70
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
7
Eoff
60
I C - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
3
2
1
RG - Ohms
5
5
TJ = 125ºC
0
1
0
VCE = 480V
1
2
0
6
2
3
I C = 25A
Eon
RG = 3ΩVGE = 15V
E on - MilliJoules
5
Eoff
5
E on - MilliJoules
E off - MilliJoules
6
7
IXGR72N60B3H1
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
tri
150
TJ = 125ºC, VGE = 15V
VCE = 480V
125
80
110
70
95
90
80
70
65
I C = 50A
50
td(on)
33
RG = 3Ω, VGE = 15V
VCE = 480V
32
TJ = 25ºC, 125ºC
60
31
50
25ºC < TJ < 125ºC
30
40
29
30
28
35
20
27
20
10
50
30
34
tri
t d(on) - Nanoseconds
I C = 100A
110
90
t d(on) - Nanoseconds
130
t r i - Nanoseconds
140
td(on)
t r i - Nanoseconds
170
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
I C = 25A
10
0
5
10
15
20
25
30
35
40
45
50
55
20
RG - Ohms
30
40
50
60
70
80
90
26
100
I C - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
100
35
90
34
33
I C = 100A
tri
70
td(on)
32
RG = 3Ω, VGE = 15V
60
31
VCE = 480V
50
30
I C = 50A
40
29
30
28
20
t d(on) - Nanoseconds
t r i - Nanoseconds
80
27
I C = 25A
10
26
0
25
35
45
55
65
75
85
95
105
115
25
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_72N60B3(76)02-10-09-D
IXGR72N60B3H1
Fig. 21 Forward Current IF vs. VF
Fig. 22 Typ. Reverse Recovery
Charge Qrr
Fig. 24 Typ. Dynamic Parameters
Qrr, IRM
Fig. 23 Typ. Peak Reverse
Current IRM
Fig. 25 Typ Recovery Time trr
Z(th)JC - [ ºC / W ]
1
0.1
0.01
0.0001
0.001
0.01
0.1
Pulse Width [s]
Fig. 26 Maximum Transient Thermal Impedance Junction to Case (for Diode)
© 2016 IXYS CORPORATION, All Rights Reserved
1
10
100
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.