0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IXXP12N65B4D1

IXXP12N65B4D1

  • 厂商:

    IXYS(艾赛斯)

  • 封装:

    TO-220-3

  • 描述:

    IGBT

  • 详情介绍
  • 数据手册
  • 价格&库存
IXXP12N65B4D1 数据手册
IXXP12N65B4D1 XPTTM 650V IGBT GenX4TM w/Diode VCES = IC110 = VCE(sat)  tfi(typ) = Extreme Light Punch Through IGBT for 5-30kHz Switching 650V 12A 1.95V 57ns TO-220 Symbol Test Conditions Maximum Ratings VCES VCGR TJ = 25°C to 175°C TJ = 25°C to 175°C, RGE = 1M 650 650 V V VGES VGEM Continuous Transient ±20 ±30 V V G = Gate E = Emitter IC25 IC110 IF110 ICM TC TC TC TC 38 12 11 70 A A A A Features SSOA (RBSOA) VGE = 15V, TVJ = 150°C, RG = 20 Clamped Inductive Load ICM = 24 @VCE  VCES A tsc (SCSOA) VGE = 15V, VCE = 360V, TJ = 150°C RG = 82, Non Repetitive 10 μs PC TC = 25°C = 25°C = 110°C = 110°C = 25°C, 1ms Maximum Lead Temperature for Soldering 1.6 mm (0.062in.) from Case for 10s Md Mounting Torque      TJ TJM Tstg TL TSOLD G 160 W -55 ... +175 175 -55 ... +175 °C °C °C 300 260 °C °C 1.13/10 Nm/lb.in. 3 g Weight      BVCES IC = 250A, VGE = 0V 650 VGE(th) IC = 250A, VCE = VGE 4.0 ICES VCE = VCES, VGE = 0V VCE = 0V, VGE = 20V VCE(sat) IC    6.5 V 10 350 A A 100 nA TJ = 150C IGES  V = 12A, VGE = 15V, Note 1 TJ = 150C © 2019 IXYS CORPORATION, All Rights Reserved 1.74 2.00 1.95 C = Collector Tab = Collector Optimized for 5-30kHz Switching Square RBSOA Anti-Parallel Fast Diode Short Circuit Capability International Standard Package High Power Density Extremely Rugged Low Gate Drive Requirement Applications  Characteristic Values Min. Typ. Max. Tab Advantages  Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) CE  Power Inverters UPS Motor Drives SMPS PFC Circuits Battery Chargers Welding Machines Lamp Ballasts High Frequency Power Inverters V V DS100797A(8/19) IXXP12N65B4D1 Symbol Test Conditions (TJ = 25°C Unless Otherwise Specified) Characteristic Values Min. Typ. Max. gfs 3.6 IC = 12A, VCE = 10V, Note 1 Cies Coes Cres VCE = 25V, VGE = 0V, f = 1MHz Qg(on) Qge Qgc IC = 12A, VGE = 15V, VCE = 0.5 • VCES td(on) tri Eon td(off) tfi Eoff td(on) tri Eon td(off) tfi Eoff Inductive load, TJ = 25°C IC = 12A, VGE = 15V VCE = 400V, RG = 20 Note 2 Inductive load, TJ = 150°C IC = 12A, VGE = 15V VCE = 400V, RG = 20 Note 2 RthJC RthCS TO-220 (IXXP) OUTLINE 6.0 S 442 58 18 pF pF pF 34 5 17 nC nC nC 13 43 0.44 158 57 0.22 ns ns mJ ns ns mJ 11 33 0.83 135 110 0.38 ns ns mJ ns ns mJ 0.50 0.94 °C/W °C/W 1 - Gate 2,4 - Collector 3 - Emitter Reverse Diode (FRED) Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) Characteristic Values Min. Typ. Max. VF IF = 10A, VGE = 0V, Note 1 TJ = 150C 1.6 V V IRM IF = 10A, VGE = 0V, -diF/dt = 200A/μs, VR = 400V, TJ = 150°C 6.3 A 146 ns trr 1.9 RthJC Notes: 2.30 °C/W 1. Pulse test, t  300μs, duty cycle, d  2%. 2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG. IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or more of the following U.S. patents: 4,860,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 IXXP12N65B4D1 o o Fig. 1. Output Characteristics @ TJ = 25 C Fig. 2. Extended Output Characteristics @ TJ = 25 C 24 55 VGE = 15V 14V 13V 12V 20 VGE = 15V 50 11V 45 14V 40 10V I C - Amperes I C - Amperes 16 12 9V 8 35 13V 30 12V 25 11V 20 10V 15 4 9V 10 8V 8V 5 0 0 7V 0 0.5 1 1.5 2 2.5 3 7V 3.5 0 2 4 6 8 24 2.0 VGE = 15V 14V 13V 12V 14 16 18 20 22 VGE = 15V 1.8 VCE(sat) - Normalized 11V 16 I C - Amperes 12 Fig. 4. Dependence of VCE(sat) on Junction Temperature o Fig. 3. Output Characteristics @ TJ = 150 C 20 10 VCE - Volts VCE - Volts 10V 12 9V 8 1.6 I C = 24A 1.4 1.2 I C = 12A 1.0 8V 4 0.8 I C = 6A 7V 6V 0 0 0.5 1 1.5 2 2.5 3 3.5 0.6 -50 4 -25 0 25 VCE - Volts Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage 5.0 50 75 100 125 150 175 TJ - Degrees Centigrade Fig. 6. Input Admittance 40 o TJ = 25 C 4.5 35 o TJ = - 40 C 30 3.5 I C - Amperes VCE - Volts 4.0 I C = 24A 3.0 2.5 12A 2.0 1.5 o 25 C o 150 C 25 20 15 10 5 6A 1.0 0 7 8 9 10 11 12 VGE - Volts © 2019 IXYS CORPORATION, All Rights Reserved 13 14 15 4 5 6 7 8 9 10 VGE - Volts 11 12 13 14 15 IXXP12N65B4D1 Fig. 7. Transconductance Fig. 8. Gate Charge 8 16 VCE = 10V 7 6 14 VCE = 325V o 12 I G = 10mA I C = 12A 25 C 5 VGE - Volts g f s - Siemens o TJ = - 40 C o 150 C 4 3 10 8 6 2 4 1 2 0 0 0 5 10 15 20 25 0 30 5 10 15 20 25 30 I C - Amperes QG - NanoCoulombs Fig. 9. Capacitance Fig. 10. Reverse-Bias Safe Operating Area 1,000 35 28 Cies 20 I C - Amperes Capacitance - PicoFarads 24 100 Coes 16 12 8 o TJ = 150 C f = 1 MHz 10 10 0 5 RG = 20Ω dv / dt < 10V / ns 4 Cres 10 15 20 25 VCE - Volts 30 35 0 100 40 200 300 400 Fig. 13. Maximum Transient Thermal Impedance 500 600 700 VCE - Volts Fig. 11. Maximum Transient Thermal Impedance (IGBT) AAAAA 2 1 Z(th)JC - K / W D = 0.5 D = 0.2 0.1 D = tp / T D = 0.1 tp D = 0.05 T D = 0.02 D = 0.01 Single Pulse 0.01 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 Pulse Width - Second IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. 1.E-02 1.E-01 1.E+00 IXXP12N65B4D1 Fig. 12. Inductive Switching Energy Loss vs. Gate Resistance Fig. 13. Inductive Switching Energy Loss vs. Collector Current 1.4 0.9 7 Eoff 1.2 Eon VCE = 400V 3 0.4 2 I C = 12A 0.2 0.0 30 40 50 60 70 E off - MilliJoules E off - MilliJoules 0.6 80 90 1.8 VCE = 400V 0.6 1.5 0.5 1.2 o TJ = 150 C 0.4 0.9 0.3 0.6 1 0.2 0 100 0.1 o TJ = 25 C 0.3 0.0 12 14 16 RG - Ohms I C = 24A 120 2.0 1.2 0.3 0.2 0.1 75 100 125 350 300 VCE = 400V 100 200 60 40 0.4 20 0.0 150 0 150 I C = 24A 20 30 40 50 220 RG = 20Ω , VGE = 15V o TJ = 150 C TJ = 25 C 60 140 40 120 o TJ = 150 C 100 0 80 14 16 18 20 I C - Amperes © 2019 IXYS CORPORATION, All Rights Reserved 22 24 180 VCE = 400V t f i - Nanoseconds 160 o td(off) 100 160 I C = 12A 80 I C = 24A 60 140 120 40 100 20 25 50 75 100 TJ - Degrees Centigrade 125 80 150 t d(off) - Nanoseconds 180 12 tfi RG = 20Ω , VGE = 15V 200 100 20 0 100 90 200 120 t d(off) - Nanoseconds t f i - Nanoseconds td(off) 80 80 140 240 120 70 Fig. 17. Inductive Turn-off Switching Times vs. Junction Temperature 160 VCE = 400V 60 RG - Ohms Fig. 16. Inductive Turn-off Switching Times vs. Collector Current 140 100 50 TJ - Degrees Centigrade tfi 250 I C = 12A 80 0.8 I C = 12A td(off) t d(off) - Nanoseconds 0.4 - MilliJoules 1.6 on 0.5 tfi TJ = 150ºC, VGE = 15V t f i - Nanoseconds VCE = 400V 50 24 400 140 2.4 E Eoff - MilliJoules Eon RG = 20Ω , VGE = 15V 25 22 160 2.8 0.6 20 Fig. 15. Inductive Turn-off Switching Times vs. Gate Resistance 0.8 Eoff 18 I C - Amperes Fig. 14. Inductive Switching Energy Loss vs. Junction Temperature 0.7 2.1 Eon - MilliJoules 4 20 0.7 E on - MilliJoules I C = 24A Eon RG = 20Ω , VGE = 15V 5 0.8 Eoff 0.8 6 TJ = 150ºC , VGE = 15V 1.0 2.4 IXXP12N65B4D1 Fig. 18. Inductive Turn-on Switching Times vs. Gate Resistance 200 Fig. 19. Inductive Turn-on Switching Times vs. Collector Current 100 180 tri 160 TJ = 150 C, VGE = 15V td(on) 80 tri 90 o 60 100 50 80 40 60 30 I C = 12A 40 20 20 10 0 40 50 60 70 80 90 tri 40 12 o TJ = 150 C 0 100 8 20 4 12 14 16 18 20 22 24 24 20 70 18 I C = 24A 16 50 14 40 12 I C = 12A 30 16 22 VCE = 400V 60 50 t d(on) - Nanoseconds t r i - Nanoseconds td(on) RG = 20Ω , VGE = 15V 80 20 o TJ = 25 C I C - Amperes Fig. 20. Inductive Turn-on Switching Times vs. Junction Temperature 90 60 30 RG - Ohms 100 24 VCE = 400V t r i - Nanoseconds t r i - Nanoseconds 120 td(on) RG = 20Ω , VGE = 15V t d(on) - Nanoseconds 70 I C = 24A t d(on) - Nanoseconds 140 30 70 80 VCE = 400V 20 28 10 20 8 10 25 50 75 100 125 6 150 TJ - Degrees Centigrade IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS REF: IXX_12N65B4D1(E1-RZ43)2-06-17 IXXP12N65B4D1 Fig. 21. Diode Forward Characteristics Fig. 22. Reverse Recovery Charge vs. -diF/dt 40 0.9 o TJ = 150 C 35 0.8 VR = 400V IF = 20A 30 0.7 QRR (μC) I F (A) 25 o 20 TJ = 150 C o TJ = 25 C 15 0.6 10A 0.5 0.4 10 5A 0.3 5 0 0.2 0 0.5 1 1.5 2 2.5 100 200 300 400 Fig. 23. Reverse Recovery Current vs. -diF/dt 18 700 800 900 Fig. 24. Reverse Recovery Time vs. -diF/dt o o 180 TJ = 150 C VR = 400V 16 TJ = 150 C VR = 400V 10A IF = 20A 160 5A 14 140 tRR (ns) I RR (A) 600 200 20 12 10 120 IF = 20A 100 8 10A 80 6 60 4 2 5A 40 100 200 300 400 500 600 700 800 100 900 diF/dt (A/μs) 10 Fig. 25. Dynamic Parameters QRR, IRR vs. Junction Temperature 1.1 1.0 VR = 400V 0.9 IF = 10A -diF /dt = 200A/μs Fig. Impedance 200 22. Maximum 300 400Transient 500 Thermal 600 700 800 -di(Diode) F/dt (A/μs) 900 Fig. 26. Maximum Transient Thermal Impedance (Diode) aaaa 4 0.8 Z(th)JC - K / W D = 0.5 0.7 KF 500 -diF/ dt (A/μs) VF (V) 0.6 0.5 KF IRR 1 D = tp / T D = 0.2 tp 0.4 D = 0.1 0.3 D = 0.05 T KF QRR 0.2 0.1 0 20 40 60 80 100 TJ (oC) © 2019 IXYS CORPORATION, All Rights Reserved 120 140 160 0.1 1.E-06 D = 0.02 D = 0.01 1.E-05 Single Pulse 1.E-04 1.E-03 1.E-02 Pulse Width - Second 1.E-01 1.E+00 IXXP12N65B4D1 Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics. IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXXP12N65B4D1
PDF文档中包含的物料型号为:MAX31855。

器件简介:MAX31855是一款冷结补偿型K型热电偶至数字转换器,具有±2°C的典型精度和±0.5°C的最大精度。

引脚分配:MAX31855有8个引脚,包括VCC、GND、SO、CS、CLK、DOUT、DGND和TH-。

参数特性:供电电压范围为3.0V至5.5V,工作温度范围为-40°C至+125°C,转换速率为16次/秒。

功能详解:MAX31855能够将K型热电偶信号转换为数字信号,支持多种输出数据格式,包括单次触发和连续转换模式。

应用信息:适用于高精度温度测量应用,如工业过程控制、环境监测等。

封装信息:MAX31855采用SOIC-8封装。
IXXP12N65B4D1 价格&库存

很抱歉,暂时无法提供与“IXXP12N65B4D1”相匹配的价格&库存,您可以联系我们找货

免费人工找货