IXYA20N120C4HV
IXYP20N120C4
1200V XPTTM
GenX4TM IGBT
High-Speed IGBT
for 20-50 kHz Switching
VCES =
IC110 =
VCE(sat)
tfi(typ) =
1200V
20A
2.5V
58ns
TO-263HV
(IXYA..HV)
G
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
VGES
VGEM
E
Maximum Ratings
1200
1200
V
V
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
68
20
120
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 10
Clamped Inductive Load
ICM = 40
VCE 0.8 • VCES
A
PC
TC = 25°C
375
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
10..65 / 22..14.6
Nm/lb.in
N/lb
2.5
3.0
g
g
TJ
TJM
Tstg
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
FC
Mounting Torque (TO-220)
Mounting Force (TO-263HV)
Weight
TO-263HV
TO-220
C (Tab)
TO-220
(IXYP)
G
C
E
G = Gate
E = Emitter
C (Tab)
D
= Collector
Tab = Collector
Features
Optimized for 20-50kHz Switching
Positive Thermal Coefficient of
Vce(sat)
International Standard Packages
Advantages
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
1200
VGE(th)
IC
= 250A, VCE = VGE
4.0
ICES
VCE = VCES, VGE = 0V
V
6.5
25 A
5 mA
TJ = 150C
IGES
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 20A, VGE = 15V, Note 1
TJ = 150C
© 2020IXYS CORPORATION, All Rights Reserved
V
100
2.1
2.5
2.5
nA
V
V
High Power Density
Low Gate Drive Requirement
Applications
Power Inverters
UPS
Motor Drives
SMPS
Battery Chargers
Welding Machines
Lamp Ballasts
DS100927B(2/20)
IXYA20N120C4HV
IXYP20N120C4
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
7.5
IC = 20A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 20A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
RthJC
RthCS
Notes:
Inductive load, TJ = 25°C
IC = 20A, VGE = 15V
VCE = 0.8 • VCES, RG = 10
Note 2
Inductive load, TJ = 125°C
IC = 20A, VGE = 15V
VCE = 0.8 • VCES, RG = 10
Note 2
TO-220
12.5
S
890
95
33
pF
pF
pF
44
8
20
nC
nC
nC
14
53
4.4
160
58
1.0
ns
ns
mJ
ns
ns
mJ
13
37
4.9
200
86
1.6
ns
ns
mJ
ns
ns
mJ
0.50
0.40 °C/W
°C/W
1. Pulse test, t 300µs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYA20N120C4HV
IXYP20N120C4
Fig. 1. Output Characteristics @ TJ = 25oC
Fig. 2. Extended Output Characteristics @ TJ = 25oC
40
VGE = 15V
13V
12V
35
11V
10V
25
9V
20
14V
80
I C - Amperes
I C - Amperes
30
V GE = 15V
100
15
8V
13V
60
12V
11V
40
10V
10
20
5
0
8V
7V
0
0
0.5
1
1.5
2
2.5
3
3.5
0
2
4
8
10
12
14
16
VCE - Volts
Fig. 3. Output Characteristics @ TJ = 150oC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
2.0
VGE = 15V
13V
12V
10V
25
20
9V
15
8V
10
7V
6V
0.5
1
1.5
2
2.5
3
3.5
4
175
1.4
I C = 20A
1.2
1.0
I C = 10A
0.6
-50
4.5
-25
0
25
50
75
100
125
TJ - Degrees Centigrade
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
4.5
150
1.6
0.8
5
0
20
I C = 40A
11V
30
18
VGE = 15V
1.8
VCE(sat) - Normalized
35
0
6
VCE - Volts
40
I C - Amperes
9V
7V
Fig. 6. Input Admittance
60
o
o
TJ = 25 C
TJ = - 40 C
4.0
50
3.5
40
o
25 C
o
I C - Amperes
VCE - Volts
150 C
I C = 40A
3.0
30
20
2.5
20A
10
2.0
10A
0
1.5
7
8
9
10
11
12
VGE - Volts
© 2020IXYS CORPORATION, All Rights Reserved
13
14
15
4
5
6
7
8
9
VGE - Volts
10
11
12
13
IXYA20N120C4HV
IXYP20N120C4
Fig. 7. Transconductance
Fig. 8. Gate Charge
16
18
16
o
14
I C = 20A
I G = 10mA
12
12
o
25 C
VGE - Volts
g f s - Siemens
VCE = 600V
14
TJ = - 40 C
10
8
o
150 C
6
10
8
6
4
4
2
2
0
0
0
5
10
15
20
25
30
35
40
45
50
0
5
10
15
I C - Amperes
20
25
30
35
40
45
QG - NanoCoulombs
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
1,000
45
Cies
40
Capacitance - PicoFarads
35
I C - Amperes
30
Coes
100
25
20
15
10
Cres
f = 1 MHz
5
10
0
5
10
15
20
VCE - Volts
25
30
35
0
200
40
o
TJ = 150 C
RG = 10Ω
dv / dt < 10V / ns
300
400
500
Fig. 11. Maximum Transient Thermal Impedance
600
700
800
900
1000
1100
1200
VCE - Volts
1
Fig. 11. Maximum Transient Thermal Impedance
aaa
Z (th)JC - K / W
0.6
0.1
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Second
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
IXYA20N120C4HV
IXYP20N120C4
Eoff
6
Eon
Eoff
20
3
12
2
14
VCE = 960V
3.0
12
2.5
10
2.0
8
o
TJ = 125 C
1.5
6
8
1.0
I C = 20A
1
4
0
6
20
30
50
60
70
0.0
80
0
10
20
30
35
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
14
140
12
120
tfi
Eon
2
6
1
td(off)
o
50
75
100
350
80
60
40
2
125
20
tfi
200
150
10
20
30
40
t d(off)
100
70
80
180
60
160
o
TJ = 25 C
40
140
20
120
0
100
30
I C - Amperes
© 2020IXYS CORPORATION, All Rights Reserved
35
40
220
I C = 20A
80
200
60
180
I C = 40A
40
20
160
140
0
25
50
75
TJ - Degrees Centigrade
100
120
125
t d(off) - Nanoseconds
80
240
td(off)
VCE = 960V
t d(off) - Nanoseconds
200
25
60
RG = 10Ω, VGE = 15V
220
VCE = 960V
100
20
tfi
240
t f i - Nanoseconds
o
50
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
120
260
RG = 10Ω,VGE = 15V
TJ = 125 C
250
I C = 40A
RG - Ohms
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
140
300
I C = 20A
TJ - Degrees Centigrade
15
400
TJ = 125 C, VGE = 15V
100
4
I C = 20A
0
t f i - Nanoseconds
8
120
450
t d(off) - Nanoseconds
3
Eon - MilliJoules
10
I C = 40A
25
40
VCE = 960V
4
10
25
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
VCE = 960V
Eoff - MilliJoules
15
I C - Amperes
RG = 10Ω,VGE = 15V
160
2
TJ = 25 C
RG - Ohms
Eoff
5
40
4
o
0.5
0
10
t f i - Nanoseconds
Eon - MilliJoules
16
E on - MilliJoules
I C = 40A
16
Eon
RG = 10Ω,VGE = 15V
3.5
VCE = 960V
4
18
4.0
24
o
TJ = 125 C , VGE = 15V
5
4.5
28
Eoff - MilliJoules
7
E off - MilliJoules
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
IXYA20N120C4HV
IXYP20N120C4
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
320
tri
280
120
80
td(on)
tri
70
100
o
TJ = 125 C, VGE = 15V
50
160
40
I C = 40A
120
30
I C = 20A
80
20
40
24
o
TJ = 25 C
VCE = 960V
80
20
60
16
o
TJ = 125 C
40
12
20
8
10
0
0
0
10
20
30
40
50
60
70
tri
120
td(on)
RG = 10Ω, VGE = 15V
VCE = 960V
25
30
35
40
32
28
24
80
20
60
16
40
20
12
I C = 20A
20
t d(on) - Nanoseconds
I C = 40A
100
15
I C - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
140
4
10
80
RG - Ohms
t r i - Nanoseconds
td(on)
t d(on) - Nanoseconds
200
28
RG = 10Ω, VGE = 15V
60
t r i - Nanoseconds
VCE = 960V
t d(on) - Nanoseconds
t r i - Nanoseconds
240
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
8
0
25
50
75
100
4
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_20N120C4H1 (Y14-RY92) 8-24-18
IXYA20N120C4HV
IXYP20N120C4
TO-263HV Outline
1 = Gate
2 = Emitter
3 = Collector
TO-220 Outline
1 = Gate
2 = Collector
3 = Emitter
© 2020IXYS CORPORATION, All Rights Reserved
IXYA20N120C4HV
IXYP20N120C4
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.