IXYK140N120A4
1200V XPTTM IGBT
GenX4TM
VCES =
IC110 =
VCE(sat)
tfi(typ) =
Ultra Low-Vsat IGBT for
up to 5kHz Switching
1200V
140A
1.70V
320ns
TO-264
(IXYK)
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
VGES
VGEM
Continuous
Transient
IC25
ILRMS
IC110
ICM
TC= 25°C (Chip Capability)
Terminal Current Limit
TC= 110°C
TC = 25°C, 1ms
SSOA
VGE = 15V, TVJ = 125°C, RG = 2
(RBSOA)
Clamped Inductive Load
PC
TC = 25°C
TJ
TJM
Tstg
TL
Maximum Lead Temperature for Soldering
1.6 mm (0.062 in.) from Case for 10s
Md
Mounting Torque
1200
1200
V
V
±20
±30
V
V
480
160
140
1200
A
A
A
A
ICM = 280
A
0.8 • V CES
V
1500
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
°C
1.13/10
Nm/lb.in
10
g
G
C
G = Gate
C = Collector
C (Tab)
E
= Emitter
Tab = Collector
Features
Optimized for Low Conduction Losses
Positive Thermal Coefficient of
Vce(sat)
International Standard Package
Advantages
Weight
E
High Power Density
Low Gate Drive Requirement
Applications
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
BVCES
IC
= 250A, VGE = 0V
VGE(th)
IC
= 4mA, VCE = VGE
ICES
VCE = VCES, VGE = 0V
1200
VCE = 0V, VGE = 20V
VCE(sat)
IC
4.5
= IC110, VGE = 15V, Note 1
TJ = 150C
©2020 Littelfuse, Inc.
V
6.5
V
25 A
5 mA
TJ = 125C
IGES
Characteristic Values
Min.
Typ.
Max.
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
Inrush Current Protection Circuits
200
1.34
1.50
1.70
nA
V
V
DS100973A(6/20)
IXYK140N120A4
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
60
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = IC110, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 70A, VGE = 15V
VCE = 0.5 • VCES, RG = 1.5
Note 2
Inductive load, TJ = 150°C
IC = 70A, VGE = 15V
VCE = 0.5 • VCES, RG = 1.5
Note 2
RthJC
RthCS
Notes:
100
S
8300
470
300
pF
pF
pF
420
nC
68
nC
210
nC
52
47
4.9
590
320
12.0
ns
ns
mJ
ns
ns
mJ
44
42
7.4
710
530
20.0
ns
ns
mJ
ns
ns
mJ
0.15
0.10 °C/W
°C/W
1. Pulse test, t 300µs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
Littelfuse reserves the right to change limits, test conditions and dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYK140N120A4
Fig. 2. Extended Output Characteristics @ TJ = 25oC
Fig. 1. Output Characteristics @ TJ = 25oC
280
1000
VGE = 15V
12V
11V
10V
240
13V
800
200
12V
700
I C - Amperes
I C - Amperes
V GE = 15V
14V
900
9V
160
8V
120
600
11V
500
10V
400
300
80
7V
9V
200
40
0
7V
0
0
0.5
1
1.5
2
2.5
0
2
4
6
8
10
12
14
16
VCE - Volts
VCE - Volts
Fig. 3. Output Characteristics @ TJ = 150oC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
280
1.8
VGE = 15V
13V
12V
11V
10V
18
20
150
175
8
8.5
VGE = 15V
1.6
I C = 280A
9V
200
VCE(sat) - Normalized
240
I C - Amperes
8V
100
6V
160
8V
120
80
7V
1.4
1.2
I C = 140A
1.0
0.8
40
I C = 70A
6V
0
0
0.5
1
1.5
2
0.6
2.5
3
-50
-25
0
VCE - Volts
50
75
100
125
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
3.5
25
Fig. 6. Input Admittance
240
o
200
2.5
160
2.0
I C = 280A
1.5
140A
I C - Amperes
VCE - Volts
TJ = 25 C
3.0
120
80
o
TJ = 150 C
o
25 C
1.0
o
- 40 C
40
70A
0
0.5
7
8
9
10
11
VGE - Volts
©2020 Littelfuse, Inc.
12
13
14
15
4
4.5
5
5.5
6
6.5
VGE - Volts
7
7.5
IXYK140N120A4
Fig. 7. Transconductance
Fig. 8. Gate Charge
180
16
o
TJ = - 40 C
160
140
I C = 140A
I G = 10mA
12
120
o
25 C
V GE - Volts
g f s - Siemens
VCE = 600V
14
100
o
80
150 C
60
10
8
6
4
40
2
20
0
0
0
20
40
60
80
100
120
140
160
180
0
200
50
100
150
I C - Amperes
250
300
350
400
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
300
10,000
C ies
Capacitance - PicoFarads
200
QG - NanoCoulombs
250
I C - Amperes
200
1,000
Coes
150
100
o
TJ = 125 C
100
1 0
RG = 2Ω
dv / dt < 10V / ns
50
Cres
f = 1 MHz
0
5
10
15
20
VCE - Volts
25
30
35
40
200
300
400
500
Fig. 11. Maximum Transient Thermal Impedance
600
700
800
900
1000
1100
1200
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
aaa
0.2
Z(th)JC - K / W
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
Littelfuse reserves the right to change limits, test conditions and dimensions.
0.1
1
10
IXYK140N120A4
Fig. 12. Inductive Switching Energy Loss vs.
Collector Current
Eoff
36
32
20
o
TJ = 150 C
VCE = 600V
14
20
12
o
TJ = 25 C
16
10
20
8
16
6
8
6
4
4
8
2
150
4
60
70
90
100
110
120
130
140
12
400
600
700
Eon
32
40
28
36
16
24
12
E off - MilliJoules
28
8
16
3
4
5
6
7
28
8
9
24
20
I C = 140A
24
16
20
12
8
I C = 70A
12
4
2
4
8
10
25
50
75
100
0
150
125
RG - Ohms
TJ - Degrees Centigrade
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
tfi
td(off)
1200
800
1100
700
o
tfi
1000
800
500
700
I C = 140A
480
600
t f i - Nanoseconds
520
500
800
700
o
TJ = 150 C
400
600
300
500
o
TJ = 25 C
460
500
440
400
1
2
3
4
5
6
RG - Ohms
©2020 Littelfuse, Inc.
7
8
9
10
200
400
100
50
60
70
80
90
100
110
I C - Amperes
120
130
140
300
150
t d(off) - Nanoseconds
900
I C = 70A
1000
900
VCE = 600V
600
t d(off) - Nanoseconds
540
td(off)
RG = 1.5Ω,VGE = 15V
TJ = 150 C, VGE = 15V
VCE = 600V
32
28
VCE = 600V
16
20
Eon
0
1000
Eon - MilliJoules
20
Eon - MilliJoules
I C = 140A
32
Eoff
32
24
I C = 70A
t f i - Nanoseconds
900
RG = 1.5Ω,VGE = 15V
VCE = 600V
560
800
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
36
580
500
Fig. 14. Inductive Switching Energy Loss vs.
Gate Resistance
o
600
2
VCE - Volts
TJ = 150 C , VGE = 15V
1
4
o
TJ = 25 C
I C - Amperes
Eoff
40
80
10
o
TJ = 150 C
8
44
E off - MilliJoules
24
12
0
12
Eon - MilliJoules
24
14
I C = 70A
28
16
Eon
16
RG = 1.5Ω,VGE = 15V
18
28
50
Eoff
32
Eon - MilliJoules
Eoff - MilliJoules
Eon
RG = 1.5Ω,VGE = 15V
36
22
Eoff - MilliJoules
40
Fig. 13. Inductive Switching Energy Loss vs.
Collector-Emitter Voltage
IXYK140N120A4
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
700
tfi
600
900
240
800
200
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
td(off)
RG = 1.5Ω, VGE = 15V
tri
I C = 140A
300
500
200
100
50
75
100
125
t r i - Nanoseconds
t f i - Nanoseconds
600
160
70
120
60
I C = 70A
80
50
400
40
40
300
150
0
30
1
2
3
4
5
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
55
o
50
TJ = 150 C
45
o
TJ = 25 C
40
20
80
90
100
110
120
td(on)
10
130
140
35
150
I C - Amperes
80
75
70
VCE = 600V
120
65
100
I C = 140A
60
80
55
60
50
40
40
70
t r i - Nanoseconds
100
60
9
t d(on) - Nanoseconds
o
60
8
RG = 1.5Ω, VGE = 15V
140
60
TJ = 25 C
50
tri
160
65
VCE = 600V
80
7
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
180
70
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on)
RG = 1.5Ω, VGE = 15V
120
6
RG - Ohms
TJ - Degrees Centigrade
tri
t d(on) - Nanoseconds
400
t d(off) - Nanoseconds
700
I C = 70A
140
80
VCE = 600V
500
160
I C = 140A
o
TJ = 150 C, VGE = 15V
VCE = 600V
25
td(on)
90
45
I C = 70A
20
40
0
25
50
75
100
125
35
150
TJ - Degrees Centigrade
Littelfuse reserves the right to change limits, test conditions and dimensions.
IXYS REF: IXY_140N120A4 (Y19-RY90) 7-16-19
IXYK140N120A4
TO-264 Outline
D
B
E
A
Q S
0R
Q1
D
0R1
1
2
3
L1
C
L
A1
b1
J M C AM
b
b2
e
c
= Gate
2,4 = Collector
3 = Emitter
1
0P1
BACK SIDE
A
4
©2020 Littelfuse, Inc.
0P
K M D BM
IXYK140N120A4
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.
Littelfuse reserves the right to change limits, test conditions and dimensions.