1200V XPTTM Gen 4
IGBT
IXYN110N120C4
VCES =
IC110 =
VCE(sat)
tfi(typ) =
High Speed IGBT for
20-50kHz Switching
1200V
110A
2.40V
37ns
SOT-227, miniBLOC
E153432
E
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
VGES
VGEM
G
Maximum Ratings
1200
1200
V
V
Continuous
Transient
±20
±30
V
V
IC25
ILRMS
IC110
ICM
TC= 25°C (Chip Capability)
Terminal Current Limit
TC= 110°C
TC = 25°C, 1ms
220
200
110
760
A
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 2
Clamped Inductive Load
ICM = 220
0.8 • VCES
A
V
PC
TC = 25°C
830
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
2500
3000
V~
V~
1.5/13
1.3/11.5
Nm/lb.in.
Nm/lb.in.
30
g
TJ
TJM
Tstg
VISOL
Md
50/60Hz
IISOL 1mA
t = 1min
t = 1s
Mounting Torque
Terminal Connection Torque
Weight
E
C
G = Gate, C = Collector, E = Emitter
either emitter terminal can be used as
Main or Kelvin Emitter
Features
Advantages
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
BVCES
IC
= 250A, VGE = 0V
VGE(th)
IC
= 3mA, VCE = VGE
ICES
VCE = VCES, VGE = 0V
Characteristic Values
Min.
Typ.
Max.
1200
6.5
IGES
VCE = 0V, VGE = 20V
VCE(sat)
IC
= IC110, VGE = 15V, Note 1
©2021 Littelfuse, Inc.
100
TJ = 150C
V
50 A
1.5 mA
TJ = 150C
1.90
2.27
2.40
High Power Density
Low Gate Drive Requirement
Applications
V
4.5
International Standard Package
miniBLOC, with Aluminium Nitride
Isolation
2500V~ Isolation Voltage
High Current Handling Capability
Optimized for 20-50kHZ Switching
Positive Thermal Coefficient of
Vce(sat)
nA
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
V
V
DS101060A(10/21)
IXYN110N120C4
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
gfs
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = IC110, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Characteristic Values
Min.
Typ.
Max.
40
Inductive load, TJ = 25°C
IC = 50A, VGE = 15V
VCE = 0.5 • VCES, RG = 2
Note 2
Inductive load, TJ = 150°C
IC = 50A, VGE = 15V
VCE = 0.5 • VCES, RG = 2
Note 2
RthJC
RthCS
Notes:
68
S
5420
335
220
pF
pF
pF
330
nC
55
nC
138
nC
40
48
3.6
320
37
1.9
ns
ns
mJ
ns
ns
mJ
36
37
5.3
326
90
3.2
ns
ns
mJ
ns
ns
mJ
0.05
0.18 °C/W
°C/W
1. Pulse test, t 300µs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher V CE(clamp), TJ or RG.
Littelfuse reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYN110N120C4
Fig. 2. Extended Output Characteristics @ TJ = 25oC
Fig. 1. Output Characteristics @ TJ = 25oC
VGE = 15V
13V
12V
11V
200
700
10V
VGE = 15V
600
14V
500
9V
I C - Amperes
I C - Amperes
160
120
8V
80
13V
400
12V
11V
300
10V
200
40
7V
6V
0
0
0.5
1
1.5
2
2.5
9V
100
8V
7V
0
3
3.5
0
5
10
15
20
VCE - Volts
VCE - Volts
Fig. 3. Output Characteristics @ TJ = 150oC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
2.0
VGE = 15V
13V
12V
11V
200
VCE(sat) - Normalized
160
I C - Amperes
V GE = 15V
1.8
I C = 220A
10V
9V
120
8V
80
1.6
1.4
I C = 110A
1.2
1.0
7V
40
0.8
6V
0
0
0.5
1
1.5
2
2.5
3
3.5
4
I C = 55A
0.6
4.5
-50
-25
0
25
VCE - Volts
50
75
100
125
150
175
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
Fig. 6. Input Admittance
5.0
300
TJ = 25oC
4.5
TJ = - 40oC
25oC
250
4.0
I C - Amperes
VCE - Volts
150oC
200
3.5
I C = 220A
3.0
2.5
150
100
110A
2.0
50
1.5
55A
0
1.0
7
8
9
10
11
VGE - Volts
©2021 Littelfuse, Inc.
12
13
14
15
4
5
6
7
8
VGE - Volts
9
10
11
IXYN110N120C4
Fig. 7. Transconductance
Fig. 8. Gate Charge
16
TJ = - 40oC
100
12
80
25oC
VGE - Volts
g f s - Siemens
VCE = 600V
I C = 110A
I G = 10mA
14
60
150oC
40
10
8
6
4
20
2
0
0
0
50
100
150
200
250
0
50
100
I C - Amperes
Fig. 9. Capacitance
200
250
300
350
Fig. 10. Reverse-Bias Safe Operating Area
10,000
240
200
C ies
160
I C - Amperes
Capacitance - PicoFarads
150
QG - NanoCoulombs
1,000
C oes
120
80
TJ = 150oC
RG = 2Ω
dv / dt < 10V / ns
40
f = 1 MHz
Cres
0
100
0
5
10
15
20
25
30
35
200
40
300
400
500
600
700
800
900
1000
1100
1200
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
0.3
Z (th)JC - K / W
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
Littelfuse reserves the right to change limits, test conditions, and dimensions.
0.1
1
10
IXYN110N120C4
Fig. 13. Inductive Switching Energy Loss vs.
Collector-Emitter Voltage
Fig. 12. Inductive Switching Energy Loss vs.
Collector Current
9
Eoff
Eon
RG = 2Ω , VGE = 15V
VCE = 600V
7
Eoff
Eon
RG = 2Ω , VGE = 15V
I C = 50A
5
8
5
6
4
5
4
TJ = 150oC
2
10
4
8
TJ = 150oC
3
6
2
4
TJ = 25oC
3
1
1
TJ =
1
20
30
40
50
60
70
0
80
10
20
800
900
8
3
Eoff - MilliJoules
5
1
4
5
6
7
8
9
12
I C = 100A
4
8
4
I C = 50A
0
3
6
2
4
I C = 50A
16
0
10
0
25
50
75
100
125
150
RG - Ohms
TJ - Degrees Centigrade
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
160
tfi
td(off)
TJ = 150oC, VGE = 15V
VCE = 600V
600
160
550
140
80
400
60
350
I C = 100A
40
20
3
4
5
6
RG - Ohms
©2021 Littelfuse, Inc.
7
8
9
10
t f i - Nanoseconds
450
I C = 50A
tfi
td(off)
400
RG = 2Ω , VGE = 15V
VCE = 600V
100
380
360
TJ = 150oC
80
340
60
320
TJ = 25oC
40
300
20
250
0
300
280
20
30
40
50
60
I C - Amperes
70
80
90
260
100
t d(off) - Nanoseconds
100
420
120
500
t d(off) - Nanoseconds
120
Eon - MilliJoules
12
Eon - MilliJoules
7
20
Eoff
Eon
RG = 2Ω ,VGE = 15V
VCE = 600V
8
16
I C = 100A
2
700
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
9
140
600
Fig. 14. Inductive Switching Energy Loss vs.
Gate Resistance
Eoff
Eon
TJ = 150oC , VGE = 15V
VCE = 600V
2
500
VCE - Volts
24
11
0
400
I C - Amperes
13
Eoff - MilliJoules
2
2
25oC
0
t f i - Nanoseconds
Eon - MilliJoules
7
Eon - MilliJoules
6
3
12
9
Eoff - MilliJoules
8
Eoff - MilliJoules
6
10
IXYN110N120C4
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
120
440
td(off)
320
40
280
I C = 100A
20
240
0
100
125
50
80
45
60
40
I C = 50A
35
30
0
25
2
3
4
5
6
7
8
9
TJ - Degrees Centigrade
RG - Ohms
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
td(on)
60
tri
120
RG = 2Ω , VGE = 15V
VCE = 600V
TJ = 25oC
30
20
55
100
50
I C = 100A
80
45
60
40
40
35
I C = 50A
20
20
0
10
20
30
40
50
60
70
80
90
100
I C - Amperes
t d(on) - Nanoseconds
40
t d(on) - Nanoseconds
40
TJ = 150oC
td(on)
RG = 2Ω , VGE = 15V
VCE = 600V
50
60
10
140
60
tri
t r i - Nanoseconds
100
150
100
80
55
20
200
75
60
I C = 100A
40
t r i - Nanoseconds
t f i - Nanoseconds
I C = 50A
60
td(on)
t d(on) - Nanoseconds
t d(off) - Nanoseconds
360
50
tri
TJ = 150oC, VGE = 15V
VCE = 600V
120
80
25
65
140
400
t r i - Nanoseconds
tfi
RG = 2Ω , VGE = 15V
VCE = 600V
100
160
30
0
25
25
50
75
100
125
150
TJ - Degrees Centigrade
Littelfuse reserves the right to change limits, test conditions, and dimensions.
IXYS REF: IXY_110N120C4 (N8-RY90) 9-06-21-A
IXYN110N120C4
SOT-227 miniBLOC
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.
©2021 Littelfuse, Inc.