Preliminary Technical Information
600V XPTTM IGBT
GenX3TM
IXYN150N60B3
Extreme Light Punch through
IGBT for 10-30kHz Switching
VCES =
IC110 =
VCE(sat)
tfi(typ) =
E
SOT-227B, miniBLOC
E153432
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
600
600
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
ILRMS
IC110
ICM
TC = 25°C (Chip Capability)
Terminal Current Limit
TC = 110°C
TC = 25°C, 1ms
250
200
140
750
A
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
75
1
A
J
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 2
Clamped Inductive Load
ICM = 300
VCE VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 82, Non Repetitive
8
μs
PC
TC = 25°C
830
W
Maximum Ratings
-55 ... +175
175
-55 ... +175
°C
°C
°C
2500
3000
V~
V~
1.5/13
1.3/11.5
Nm/lb.in
Nm/lb.in
30
g
TJ
TJM
Tstg
VISOL
Md
50/60Hz
IISOL 1mA
t = 1min
t = 1s
Mounting Torque
Terminal Connection Torque
Weight
E
G
E
C
G = Gate, C = Collector, E = Emitter
either emitter terminal can be used as
Main or Kelvin Emitter
Features
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250μA, VGE = 0V
600
VGE(th)
IC
= 250μA, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
V
5.5
10 μA
1 mA
TJ = 150°C
VCE = 0V, VGE = ±20V
VCE(sat)
IC
= 150A, VGE = 15V, Note 1
TJ = 150°C
© 2016 IXYS CORPORATION, All Rights Reserved
V
1.77
2.10
nA
2.20
V
V
High Power Density
Low Gate Drive Requirement
Applications
±200
Optimized for Low Conduction and
Switching Losses
miniBLOC, with Aluminium Nitride
Isolation
International Standard Package
Isolation Voltage 2500V~
Optimized for 10-30kHz Switching
Square RBSOA
Avalanche Rated
Short Circuit Capability
High Current Handling Capability
Advantages
IGES
600V
140A
2.20V
80ns
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100548B(11/16)
IXYN150N60B3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
40
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 150A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 75A, VGE = 15V
VCE = 400V, RG = 2
Note 2
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 150°C
C = 75A, VGE = 15V
VCE = 400V, RG = 2
Note 2
RthJC
RthCS
Notes:
70
S
6950
400
150
pF
pF
pF
260
39
115
nC
nC
nC
27
88
4.20
167
80
2.60
ns
ns
mJ
ns
ns
mJ
26
84
5.30
220
110
3.76
ns
ns
mJ
ns
ns
mJ
0.05
0.18 °C/W
°C/W
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
SOT-227B (IXYN) OUTLINE
J
M4-7 NUT
(4 PLACES)
A
B
D
MN
C
S
L
E
F
G
H
O
U
PRELIMANARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYN150N60B3
Fig. 1. Output Characteristics @ TJ = 25ºC
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
300
14V
13V
700
10V
600
200
12V
I C - Amperes
I C - Amperes
250
VGE = 15V
800
VGE = 15V
13V
12V
11V
9V
150
100
8V
500
11V
400
300
10V
200
50
7V
6V
0
0
0.5
1
1.5
2
2.5
3
9V
100
8V
7V
0
3.5
0
2
4
6
8
300
2.0
VGE = 15V
13V
12V
11V
14
16
18
20
150
175
VGE = 15V
1.8
10V
I C = 300A
VCE(sat) - Normalized
I C - Amperes
12
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 150ºC
250
10
VCE - Volts
VCE - Volts
200
9V
150
8V
100
7V
50
1.6
1.4
1.2
I C = 150A
1.0
0.8
I C = 75A
6V
0.6
0
0
0.5
1
1.5
2
2.5
3
3.5
4
-50
4.5
-25
0
25
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
6.0
50
75
100
125
TJ - Degrees Centigrade
Fig. 6. Input Admittance
400
TJ = 25ºC
5.5
350
5.0
300
I C - Amperes
VCE - Volts
4.5
4.0
3.5
I C = 300A
3.0
250
200
TJ = 150ºC
25ºC
150
2.5
- 40ºC
100
150A
2.0
50
1.5
75A
1.0
7
8
9
10
11
12
VGE - Volts
© 2016 IXYS CORPORATION, All Rights Reserved
0
13
14
15
4
5
6
7
8
VGE - Volts
9
10
11
IXYN150N60B3
Fig. 8. Gate Charge
Fig. 7. Transconductance
16
180
TJ = - 40ºC
160
140
I C = 150A
I G = 10mA
12
25ºC
120
V GE - Volts
g f s - Siemens
VCE = 300V
14
150ºC
100
80
60
10
8
6
4
40
2
20
0
0
0
50
100
150
200
250
300
350
0
400
20
40
60
I C - Amperes
100
120
140
160
180
200
220
240
260
QG - NanoCoulombs
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
350
10,000
300
Cies
250
1,000
Coes
I C - Amperes
Capacitance - PicoFarads
80
200
150
100
50
Cres
f = 1 MHz
TJ = 150ºC
RG = 2Ω
dv / dt < 10V / ns
0
100
0
5
10
15
20
25
100
200
35
40
Fig.3011. Maximum
Transient Thermal
Impedance
300
400
500
600
VCE - Volts
VCE - Volts
1
Fig. 11. Maximum Transient Thermal Impedance
aaaaa
0.3
Z (th)JC - K / W
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
10
IXYN150N60B3
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
Eoff
6
Eon
Eoff
11
TJ = 150ºC , VGE = 15V
VCE = 400V
Eon
3
5
4
6
3
4
TJ = 25ºC
E on - MilliJoules
7
E on - MilliJoules
4
8
TJ = 150ºC
VCE = 400V
9
10
RG = 2Ω , VGE = 15V
5
I C = 100A
5
Eoff - MilliJoules
6
13
E off - MilliJoules
7
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
I C = 50A
2
2
3
1
1
1
1
3
5
7
9
11
13
2
50
15
55
60
65
70
RG - Ohms
VCE = 400V
280
12
240
10
200
4
8
3
6
I C = 50A
2
1
0
50
75
100
125
Eon - MilliJoules
I C = 100A
25
tfi
tfi
td(off)
600
500
I C = 100A
120
4
80
2
40
0
150
0
400
200
100
3
5
7
240
240
200
13
15
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
0
85
I C - Amperes
© 2016 IXYS CORPORATION, All Rights Reserved
260
td(off)
240
RG = 2Ω , VGE = 15V
90
95
160
220
120
200
I C = 50A, 100A
80
180
160
40
160
140
100
0
180
TJ = 25ºC
40
t f i - Nanoseconds
t f i - Nanoseconds
80
80
11
25
50
75
100
TJ - Degrees Centigrade
125
140
150
t d(off) - Nanoseconds
200
t d(off) - Nanoseconds
TJ = 150ºC
75
9
VCE = 400V
120
70
300
I C = 50A
1
260
220
65
700
160
tfi
160
60
800
VCE = 400V
VCE = 400V
55
0
100
TJ = 150ºC, VGE = 15V
td(off)
RG = 2Ω , VGE = 15V
50
95
RG - Ohms
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
200
90
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
TJ - Degrees Centigrade
240
85
t d(off) - Nanoseconds
5
E off - MilliJoules
Eon
RG = 2Ω , VGE = 15V
14
t f i - Nanoseconds
Eoff
6
80
I C - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
7
75
IXYN150N60B3
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
tri
200
td(on)
160
120
60
80
40
I C = 50A
40
20
0
0
1
3
5
7
9
11
13
tri
80
26
TJ = 150ºC
60
24
40
22
50
55
60
65
70
75
80
85
90
95
20
100
36
32
I C = 100A
140
30
120
28
100
26
80
24
60
22
I C = 50A
40
20
20
18
0
50
28
TJ = 25ºC
34
VCE = 400V
25
100
30
75
100
125
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on)
RG = 2Ω , VGE = 15V
160
VCE = 400V
120
I C - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
180
32
RG = 2Ω , VGE = 15V
20
15
RG - Ohms
200
td(on)
34
t d(on) - Nanoseconds
80
t d(on) - Nanoseconds
I C = 100A
160
tri
140
100
TJ = 150ºC, VGE = 15V
VCE = 400V
t r i - Nanoseconds
120
t r i - Nanoseconds
240
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
16
150
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_150N60B3(8D-Y42) 11-03-16
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.