High Voltage, High Gain
BIMOSFETTM Monolithic
Bipolar MOS Transistor
IXBA10N300HV
IXBH10N300HV
VCES = 3000V
IC110
= 10A
VCE(sat) 2.8V
TO-263HV
(IXBA..HV)
G
E
Symbol
Test Conditions
Maximum Ratings
VCES
TC = 25°C to 150°C
3000
V
VCGR
TJ = 25°C to 150°C, RGE = 1M
3000
V
VGES
Continuous
± 20
V
VGEM
Transient
± 30
V
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
34
10
88
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 10
Clamped Inductive Load
ICM = 80
1500
A
V
TSC
(SCSOA)
VGE = 15V, TJ = 125°C,
RG = 82, VCE = 1500V, Non-Repetitive
10
µs
PC
TC = 25°C
180
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
Features
300
260
°C
°C
10..65 / 2.2..14.6
N/lb
1.13/10
Nm/lb.in
2.5
6.0
g
g
TJ
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062 in.) from Case for 10s
FC
Mounting Force (TO-263HV)
Md
Mounting Torque (TO-247HV)
Weight
TO-263HV
TO-247HV
C (Tab)
TO-247HV
(IXBH..HV)
G
E
C
G = Gate
E = Emitter
C (Tab)
C
= Collector
Tab = Collector
High Blocking Voltage
Anti-Parallel Diode
Low Conduction Losses
Advantages
Low Gate Drive Requirement
High Power Density
Applications
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250µA, VGE = 0V
3000
VGE(th)
IC
= 250µA, VCE = VGE
3.0
ICES
VCE = 0.8 • VCES, VGE = 0V
IGES
VCE = 0V, VGE = ± 20V
VCE(sat)
IC
TJ = 125°C
= 10A, VGE = 15V, Note 1
2.2
TJ = 125°C
© 2021 Littelfuse, Inc.
2.7
V
5.0
V
25
500
µA
µA
±100
nA
2.8
V
Switch-Mode and Resonant-Mode
Power Supplies
Uninterruptible Power Supplies (UPS)
Laser Generators
Capacitor Discharge Circuits
AC Switches
V
DS100608C(6/21)
IXBA10N300HV
IXBH10N300HV
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfS
6
IC = 10A, VCE = 10V, Note 1
11
S
1044
pF
42
pF
Cres
14
pF
Qg
46
nC
Cies
Coes
Qge
VCE = 25V, VGE = 0V, f = 1MHz
IC = 10A, VGE = 15V, VCE = 1000V
Qgc
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
Resistive Switching Times, TJ = 25°C
IC = 10A, VGE = 15V
VCE = 960V, RG = 10
Resistive Switching Times, TJ = 125°C
IC = 10A, VGE = 15V
VCE = 960V, RG = 10
5
nC
20
nC
36
ns
340
ns
100
ns
1850
ns
40
ns
765
ns
120
ns
2010
ns
RthJC
RthCS
0.69
TO-247HV
0.21
°C/W
°C/W
Reverse Diode
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
VF
IF = 10A, VGE = 0V
trr
IRM
QRM
IF = 5A, VGE = 0V, -diF/dt = 100A/µs
Note
1: Pulse test, t 300µs, duty cycle, d 2%.
2.7
1.6
23
18.6
VR = 100V, VGE = 0V
V
µs
A
µC
Littelfuse reserves the right to change limits, test conditions and dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXBA10N300HV
IXBH10N300HV
Fig. 1. Output Characteristics @ TJ = 25ºC
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
20
140
V GE = 15V
13V
11V
10V
9V
18
16
14V
100
12
I C - Amperes
14
I C - Amperes
VGE = 15V
120
8V
7V
10
8
6V
6
13V
80
12V
11V
60
10V
40
9V
4
8V
20
2
0
0
0.5
1
1.5
2
2.5
3
6V
0
3.5
0
5
10
20
25
VCE - Volts
Fig. 3. Output Characteristics @ TJ = 125ºC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
30
1.7
VGE = 15V
13V
11V
10V
9V
18
16
VGE = 15V
1.6
1.5
14
12
VCE(sat) - Normalized
8V
7V
10
8
6V
6
I C = 20A
1.4
1.3
1.2
I C = 10A
1.1
1.0
0.9
4
I C = 5A
5V
2
0.8
0.7
0
0
0.5
1
1.5
2
2.5
3
3.5
-50
4
-25
0
VCE - Volts
25
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
Fig. 6. Input Admittance
32
5.0
28
TJ = 25ºC
4.5
24
3.5
IC - Amperes
4.0
VCE - Volts
15
VCE - Volts
20
IC - Amperes
7V
5V
I C = 20A
3.0
10A
2.5
20
16
12
TJ = 125ºC
25ºC
8
2.0
- 40ºC
4
5A
0
1.5
5
6
7
8
9
10
VGE - Volts
© 2021 Littelfuse, Inc.
11
12
13
14
15
3.0
3.5
4.0
4.5
5.0
5.5
6.0
VGE - Volts
6.5
7.0
7.5
8.0
8.5
IXBA10N300HV
IXBH10N300HV
Fig. 7. Transconductance
Fig. 8. Forward Voltage Drop of Intrinsic Diode
18
60
TJ = 25ºC
125ºC
TJ = - 40ºC
16
50
25ºC
12
10
40
IF - Amperes
g f s - Siemens
14
125ºC
8
6
30
VGE = 0V
20
VGE = 15V
4
10
2
0
0
5
10
15
20
25
30
0
35
0
0.5
1
1.5
2
I C - Amperes
3
3.5
4
4.5
5
5.5
Fig. 10. Capacitance
Fig. 9. Gate Charge
10,000
16
f = 1 MHz
12
Capacitance - PicoFarads
VCE = 1kV
I C = 10A
I G = 10mA
14
VGE - Volts
2.5
VF - Volts
10
8
6
4
1,000
Cies
100
C oes
2
Cres
0
0
5
10
15
20
25
30
35
40
45
10
50
0
5
10
15
20
25
30
35
40
VCE - Volts
QG - NanoCoulombs
Fig. 11. Reverse-Bias Safe Operating Area
Fig. 12. Maximum Transient Thermal Impedance
90
1
80
70
Z(th)JC - K / W
I C - Amperes
60
50
40
0.1
30
TJ = 125ºC
RG = 10Ω
dv / dt < 10V / ns
20
10
0
500
1000
1500
2000
2500
3000
0.01
0.00001
VCE - Volts
Littelfuse reserves the right to change limits, test conditions and dimensions.
0.0001
0.001
0.01
0.1
Pulse Width - Seconds
1
10
IXBA10N300HV
IXBH10N300HV
Fig. 14. Resistive Turn-on Rise Time vs.
Collector Current
Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature
800
1200
RG = 10Ω , VGE = 15V
VCE = 960V
RG = 10Ω , VGE = 15V
VCE = 960V
1000
600
I C = 10A
500
I C = 20A
400
800
t r - Nanoseconds
t r - Nanoseconds
700
TJ = 125ºC
600
400
TJ = 25ºC
300
200
200
0
25
35
45
55
65
75
85
95
105
115
125
5
6
7
8
9
10
11
TJ - Degrees Centigrade
1100
td(on)
16
17
18
19
20
2200
I C = 10A
50
600
130
2000
120
t f - Nanoseconds
60
140
I C = 20A
1800
110
1600
100
I C = 10A
1400
90
1200
80
1000
70
t d(off) - Nanoseconds
800
t d(on) - Nanoseconds
70
I C = 20A
td(off)
RG = 10Ω, VGE = 15V
VCE = 960V
80
900
t r - Nanoseconds
15
150
tf
2400
TJ = 125ºC, VGE = 15V
VCE = 960V
700
14
2600
90
tr
13
Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature
Fig. 15. Resistive Turn-on Switching Times vs.
Gate Resistance
1000
12
I C - Amperes
40
500
30
10
20
30
40
50
60
70
80
90
800
100
60
25
35
45
55
RG - Ohms
3600
td(off)
t f - Nanoseconds
TJ = 125ºC
130
110
TJ = 25ºC
1600
90
1200
70
800
50
11
13
I C - Amperes
© 2021 Littelfuse, Inc.
125
15
17
19
21
td(off)
500
2000
400
I C = 10A
1600
300
I C = 20A
1200
200
800
100
400
0
10
20
30
40
50
60
RG - Ohms
70
80
90
100
t d(off) - Nanoseconds
150
9
115
TJ = 125ºC, VGE = 15V
VCE = 960V
2400
t d(off) - Nanoseconds
2800
7
105
600
tf
170
RG = 10Ω, VGE = 15V
V CE = 960V
5
95
2800
t f - Nanoseconds
tf
2000
85
Fig. 28. Resistive Turn-off Switching Times vs.
Gate Resistance
190
2400
75
T J - Degrees Centigrade
Fig. 17. Resistive Turn-off Switching Times vs.
Collector Current
3200
65
IXBA10N300HV
IXBH10N300HV
Fig. 19. Forward-Bias Safe Operating Area
@ TC = 25ºC
Fig. 20. Forward-Bias Safe Operating Area
@ TC = 75ºC
100
100
V CE(sat) Limit
VCE(sat) Limit
10
IC - Amperes
IC - Amperes
10
25µs
1
100µs
1
25µs
100µs
1ms
1ms
0.1
0.1
TJ = 150ºC
TC = 25ºC
Single Pulse
TJ = 150ºC
TC = 75ºC
Single Pulse
10ms
DC
10ms
100ms
DC
100ms
0.01
0.01
1
10
100
1,000
10,000
1
VCE - Volts
10
100
1,000
10,000
VCE - Volts
Littelfuse reserves the right to change limits, test conditions and dimensions.
IXYS REF: B_10N300 (3T-B8) 3-01-21
IXBA10N300HV
IXBH10N300HV
TO-263HV Outline
1 = Gate
2 = Emitter
3 = Collector
TO-247HV Outline
E
R
E1
A
0P
Q
0P1
A2
S
D1
D
4
D2
1 2
3
L1
D3
L
e
e1
A3
2X
A1
c
E2
E3
4X
b
b1
3X
1 = Gate
2,4 = Emitter
3 = Collector
© 2021 Littelfuse, Inc.
3X
IXBA10N300HV
IXBH10N300HV
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.
Littelfuse reserves the right to change limits, test conditions and dimensions.