Advance Technical Information
High Voltage, High Gain
BIMOSFETTM Monolithic
Bipolar MOS Transistor
IXBT20N360HV
IXBH20N360HV
VCES = 3600V
IC110 = 20A
VCE(sat) 3.4V
TO-268HV (IXBT)
Symbol
Test Conditions
Maximum Ratings
G
VCES
TJ
= 25°C to 150°C
3600
V
VCGR
TJ
= 25°C to 150°C, RGE = 1M
3600
V
VGES
Continuous
± 20
V
VGEM
Transient
± 30
V
IC25
TC
= 25°C
70
A
IC110
TC
= 110°C
20
A
ICM
TC
= 25°C, 1ms
220
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 10
Clamped Inductive Load
ICM = 160
VCES 1500
A
V
TSC
(SCSOA)
VGE = 15V, TJ = 125°C,
RG = 52, VCE = 1500V, Non-Repetitive
10
μs
PC
TC
430
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
300
260
°C
°C
1.13/10
Nm/lb.in
4
6
g
g
= 25°C
TJ
TL
TSOLD
Maximum Lead Temperature for Soldering
Plastic Body for 10s
Md
Mounting Torque (TO-247HV)
Weight
TO-268HV
TO-247HV
E
C (Tab)
TO-247HV (IXBH)
G
E
C
G = Gate
E = Emitter
C (Tab)
C
= Collector
Tab = Collector
Features
High Voltage Packages
High Blocking Voltage
High Peak Current Capability
Low Saturation Voltage
Advantages
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BV CES
IC
= 250μA, VGE = 0V
3600
VGE(th)
IC
= 250μA, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
IGES
VCE = 0V, VGE = ± 20V
VCE(sat)
IC
= 20A, VGE = 15V, Note 1
V
TJ = 125°C
5.0
V
25
500
μA
μA
±100
nA
3.4
V
V
Applications
TJ = 125°C
2.9
3.6
© 2014 IXYS CORPORATION, All Rights Reserved
Low Gate Drive Requirement
High Power Density
Switch-Mode and Resonant-Mode
Power Supplies
Uninterruptible Power Supplies (UPS)
Laser Generators
Capacitor Discharge Circuits
AC Switches
DS100643(12/14)
1
IXBT20N360HV
IXBH20N360HV
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
gfs
IC = 20A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 20A, VGE = 15V, VCE = 1000V
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
RthJC
RthCS
Characteristic Values
Min.
Typ.
Max.
10
Inductive load, TJ = 25°C
IC = 20A, VGE = 15V
VCE = 1500V, RG = 10
Note 2
Inductive load, TJ = 125°C
IC = 20A, VGE = 15V
VCE = 1500V, RG = 10
Note 2
Resistive load, TJ = 25°C
IC = 20A, VGE = 15V
VCE = 960V, RG = 10
Resistive load, TJ = 125°C
IC = 20A, VGE = 15V
TO-268HV Outline
E
17
S
2045
110
50
pF
pF
pF
110
13
43
nC
nC
nC
18
14
15.50
238
206
4.30
ns
ns
mJ
ns
ns
mJ
20
22
16.10
247
216
4.15
ns
ns
mJ
ns
ns
mJ
30
325
ns
ns
165
1045
ns
ns
32
890
ns
ns
185
1100
ns
ns
TO-247HV
0.29°C/W
°C/W
0.21
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
trr
IRM
QRM
3
D
1
E1
H
2
3
2
C
e
D1
D2
A1
L4
e
A
C2
D3
1
b
PINS:
1 - Gate 2 - Emitter
3 - Collector
L3
A2
L
TO-247HV Outline
E
R
0P
A
A2
E1
0P1
Q S
D1
D
4
D2
VCE = 960V, RG = 10
Reverse Diode
VF
L2
1 2
3
L1
D3
L
e
e1
A3
2X
A1
E2
E3
4X
b
c
3X
PINS:
1 - Gate 2 - Emitter
3, 4 - Collector
3X
Characteristic Values
Min.
Typ.
Max
IF = 20A, VGE = 0V, Note 1
3.5
1.7
IF = 10A, VGE = 0V, -diF/dt = 100A/μs
VR = 100V, VGE = 0V
V
μs
35
A
30
μC
Note: 1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
ADVANCETECHNICALINFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experience,
and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to
change limits, test conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
b1
IXBT20N360HV
IXBH20N360HV
Fig. 1. Output Characteristics @ TJ = 25ºC
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
40
VGE = 25V
19V
15V
13V
11V
35
17V
200
9V
25
I C - Amperes
I C - Amperes
30
VGE = 25V
21V
19V
240
20
15
7V
15V
160
13V
120
11V
80
10
9V
40
5
6V
0
0
0.5
1
1.5
2
2.5
3
3.5
7V
0
4
4.5
0
5
10
15
1.6
30
VGE = 15V
1.5
9V
VCE(sat) - Normalized
30
I C - Amperes
1.7
VGE = 25V
21V
17V
15V
13V
11V
35
25
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 125ºC
40
20
VCE - Volts
VCE - Volts
25
20
7V
15
1.4
I C = 40A
1.3
1.2
I C = 20A
1.1
1.0
10
I C = 10A
0.9
6V
5
0.8
5V
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0.7
-50
5.5
-25
0
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
8
25
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 6. Input Admittance
60
50
6
40
I C - Amperes
VCE - Volts
TJ = 25ºC
7
5
I C = 40A
4
20
20A
3
30
TJ = 125ºC
25ºC
- 40ºC
10
10A
0
2
6
7
8
9
10
11
12
13
VGE - Volts
© 2014 IXYS CORPORATION, All Rights Reserved
14
15
3.5
4
4.5
5
5.5
6
6.5
7
VGE - Volts
7.5
8
8.5
9
9.5
IXBT20N360HV
IXBH20N360HV
Fig. 8. Gate Charge
Fig. 7. Transconductance
16
30
TJ = - 40ºC
VCE = 1000V
14
I C = 20A
25
I G = 10mA
VGE - Volts
g f s - Siemens
12
25ºC
20
125ºC
15
10
10
8
6
4
5
2
0
0
0
10
20
30
40
50
60
70
0
10
20
30
I C - Amperes
50
60
70
80
90
100
110
QG - NanoCoulombs
Fig. 9. Forward Voltage Drop of Intrinsic Diode
Fig. 10. Capacitance
60
10,000
f = 1 MHz
TJ = 25ºC
125ºC
Capacitance - PicoFarads
J
50
40
I F - Amperes
40
30
VGE = 0V
20
C ies
1,000
C oes
100
VGE = 15V
10
Cres
0
10
0.5
1
1.5
2
2.5
3
3.5
4
0
5
10
15
20
25
30
35
40
VCE - Volts
VF - Volts
Fig. 12. Maximum Transient Thermal Impedance
Fig. 11. Reverse-Bias Safe Operating Area
1
180
160
140
Z(th)JC - ºC / W
I C - Amperes
120
100
80
60
40
TJ = 125ºC
20
RG = 10Ω
dv / dt < 10V / ns
0
200
600
1000
1400
1800
2200
2600
3000
3400
VCE - Volts
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
0.1
Pulse Width - Seconds
1
10
IXBT20N360HV
IXBH20N360HV
Fig. 13. Forward-Bias Safe Operating Area @ T C = 25ºC
Fig. 14. Forward-Bias Safe Operating Area @ T C = 75ºC
1000
1000
VCE(sat) Limit
VCE(sat) Limit
100
I C - Amperes
I C - Amperes
100
10
25µs
100µs
1
1ms
10
25µs
100µs
1
1ms
TJ = 150ºC
0.1
DC
TJ = 150ºC
0.1
10ms
TC = 25ºC
Single Pulse
TC = 75ºC
Single Pulse
100ms
0.01
DC
0.01
1
10
100
1,000
10,000
1
10
100
Fig. 15. Inductive Switching Energy Loss vs.
Gate Resistance
Eoff
16
Eon -
42
Eoff
12
8
26
6
22
4
18
I C = 20A
2
Eoff - MilliJoules
E off - MilliJoules
30
14
0
10
15
20
25
30
35
40
45
40
8
6
24
TJ = 25ºC
4
16
2
8
0
50
0
10
15
20
25
---
35
40
420
36
380
Fig. 18. Inductive Turn-off Switching Times vs.
Gate Resistance
tfi
900
t d(off) - - - -
800
TJ = 125ºC, VGE = 15V
VCE = 1500V
10
28
8
24
6
700
300
600
260
500
I C = 40A
I C = 20A
220
400
16
180
300
12
140
200
20
4
Eon - MilliJoules
I C = 40A
VCE = 1500V
340
32
I C = 20A
2
0
25
35
45
55
65
75
85
95
105
TJ - Degrees Centigrade
© 2014 IXYS CORPORATION, All Rights Reserved
115
8
125
100
100
10
15
20
25
30
RG - Ohms
35
40
45
50
t d(off) - Nanoseconds
12
Eoff - MilliJoules
Eon -
RG = 10Ω , VGE = 15V
40
t f i - Nanoseconds
Eoff
30
I C - Amperes
Fig. 17. Inductive Switching Energy Loss vs.
Junction Temperature
14
32
TJ = 125ºC
RG - Ohms
16
48
Eon - MilliJoules
10
E on - MilliJoules
34
I C = 40A
---
VCE = 1500V
10
12
Eon -
56
TJ = 125ºC , VGE = 15V
38
VCE = 1500V
10
10,000
Fig. 16. Inductive Switching Energy Loss vs.
Collector Current
14
46
---
TJ = 125ºC , VGE = 15V
14
1,000
VCE - Volts
VCE - Volts
18
10ms
100ms
IXBT20N360HV
IXBH20N360HV
Fig. 19. Inductive Turn-off Switching Times vs.
Collector Current
400
tfi
360
t d(off) - - - -
280
400
270
360
RG = 10Ω , VGE = 15V
VCE = 1500V
260
240
240
200
230
TJ = 25ºC
160
220
120
210
80
15
20
25
30
35
VCE = 1500V
280
250
240
240
I C = 20A
230
160
25
35
45
70
60
60
50
t r i - Nanoseconds
I C = 40A
60
40
40
30
I C = 20A
20
0
25
30
35
40
45
tri
IC = 40A
30
0
30
22
TJ = 125ºC
18
TJ = 25ºC
14
10
15
20
25
30
35
40
31
19
20
16
10
13
0
65
26
10
IC = 20A
55
t d(on) - - - -
20
10
50
22
45
34
RG = 10Ω , VGE = 15V
30
10
25
40
35
210
125
28
VCE = 1500V
25
115
75
85
95
105
115
t d(on) - Nanoseconds
t r i - Nanoseconds
t d(on) - - - -
RG = 10Ω , VGE = 15V
50
105
I C - Amperes
Fig. 23. Inductive Turn-on Switching Times vs.
Junction Temperature
60
95
40
20
RG - Ohms
70
85
t d(on) - Nanoseconds
50
t d(on) - Nanoseconds
VCE = 1500V
20
75
VCE = 1500V
80
15
65
Fig. 22. Inductive Turn-on Switching Times vs.
Collector Current
tri
t d(on) - - - -
TJ = 125ºC, VGE = 15V
10
55
TJ - Degrees Centigrade
t r i - Nanoseconds
tri
220
I C = 40A
120
40
Fig. 21. Inductive Turn-on Switching Times vs.
Gate Resistance
100
260
I C = 40A
I C - Amperes
120
270
200
200
10
t d(off) - - - -
RG = 10Ω , VGE = 15V
320
t f i - Nanoseconds
250
TJ = 125ºC
tfi
280
t d(off) - Nanoseconds
280
t d(off) - Nanoseconds
t f i - Nanoseconds
320
Fig. 20. Inductive Turn-off Switching Times vs.
Junction Temperature
10
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS REF: B_20N360(H7-B11)12-12-14-A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.