GenX3TM 600V IGBT
Medium speed low Vsat PT
IGBTs 5-40 kHz switching
IXGA48N60B3
IXGP48N60B3*
IXGH48N60B3
VCES = 600V
IC110 = 48A
VCE(sat) ≤ 1.8V
*Obsolete Part Number
TO-263 (IXGA)
Symbol
Test Conditions
Maximum Ratings
VCES
TC = 25°C to 150°C
600
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
600
V
VGES
Continuous
± 20
V
VGEM
Transient
± 30
V
48
A
280
A
IC110
TC = 110°C
ICM
TC = 25°C, 1ms
SSOA
VGE = 15V, TVJ = 125°C, RG = 5Ω
(RBSOA)
Clamped inductive load @ ≤ 600V
PC
TC = 25°C
TJ
G
ICM = 120
A
300
W
E
(TAB)
TO-220 (IXGP)
G
C
(TAB)
E
TO-247 (IXGH)
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
TL
1.6mm (0.062 in.) from case for 10s
300
°C
TSOLD
Plastic body for 10 seconds
260
°C
Md
Mounting torque (TO-247)(TO-220)
1.13/10
Nm/lb.in.
Weight
TO-263
TO-220
TO-247
2.5
3.0
6.0
g
g
g
G
C
(TAB)
E
G = Gate
E = Emitter
C = Collector
TAB = Collector
Features
z
z
z
Optimized for low conduction and
switching losses
Square RBSOA
International standard packages
Advantages
Symbol Test Conditions
Characteristic Values
(TJ = 25°C unless otherwise specified)
Min.
BVCES
IC = 250μA, VGE = 0V
600
VGE(th)
IC = 250μA, VCE = VGE
3.0
ICES
VCE = VCES
VGE = 0V
Typ.
Max.
z
V
5.0
V
25 μA
TJ = 125°C
IGES
VCE = 0V, VGE = ± 20V
VCE(sat)
IC = 32A, VGE = 15V, Note 1
250 μA
±100 nA
1.8
z
V
Applications
z
z
z
z
z
z
z
z
© 2008 IXYS CORPORATION, All rights reserved
High power density
Low gate drive requirement
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS99938A(05/08)
IXGA48N60B3 IXGP48N60B3
IXGH48N60B3
Symbol
Test Conditions
(TJ = 25°C unless otherwise specified)
gfs
Characteristic Values
Min.
Typ.
Max.
IC = 30A, VCE = 10V, Note 1
28
TO-247 (IXGH) Outline
46
S
3980
pF
170
pF
Cres
45
pF
Qg
115
nC
Cies
Coes
Qge
VCE = 25V, VGE = 0V, f = 1MHz
21
nC
Qgc
40
nC
td(on)
22
ns
tri
Eon
td(off)
tfi
IC = 40A, VGE = 15V, VCE = 0.5 • VCES
Inductive Load, TJ = 25°C
IC = 30A, VGE = 15V
VCE = 480V, RG = 5Ω
Eoff
td(on)
tri
Eon
td(off)
tfi
25
ns
0.84
mJ
130
200
ns
116
200
ns
0.66
1.20
mJ
19
Inductive Load, TJ = 125°C
IC = 30A, VGE = 15V
VCE = 480V, RG = 5Ω
Eoff
25
ns
1.71
mJ
190
ns
157
ns
1.30
mJ
RthJC
RthCS
ns
∅P
e
Dim.
Millimeter
Min. Max.
A
4.7
5.3
2.2
2.54
A1
2.2
2.6
A2
b
1.0
1.4
b1
1.65
2.13
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
0.42 °C/W
(TO-247)
(TO-220)
0.25
0.50
°C/W
°C/W
TO-220 (IXGP) Outline
Note 1: Pulse test, t ≤ 300μs; duty cycle, d ≤ 2%.
TO-263 (IXGA) Outline
Pins:
1 - Gate
3 - Source
2 - Drain
4 - Drain
IXYS reserves the right to change limits, test conditions and dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGA48N60B3 IXGP48N60B3
IXGH48N60B3
Fig. 2. Extended Output Characteristics
@ 25ºC
Fig. 1. Output Characteristics
@ 25ºC
80
300
VGE = 15V
13V
11V
70
VGE = 15V
13V
11V
270
9V
240
60
IC - Amperes
IC - Amperes
210
50
7V
40
30
9V
180
150
120
90
20
60
10
7V
30
5V
0
0
0.0
0.4
0.8
1.2
1.6
2.0
2.4
0
2.8
2
4
6
Fig. 3. Output Characteristics
@ 125ºC
12
14
16
125
150
1.4
VGE = 15V
13V
11V
70
VCE(sat) - Normalized
50
7V
40
30
20
5V
10
VGE = 15V
1.3
9V
60
IC - Amperes
10
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
80
I
1.2
C
= 80A
1.1
I
C
= 40A
1.0
0.9
0.8
0
I
C
= 20A
0.7
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
-50
-25
0
VCE - Volts
25
50
75
100
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
200
3.8
3.6
180
TJ = 25ºC
3.4
160
3.2
C
2.8
140
= 80A
40A
20A
IC - Amperes
I
3.0
VCE - Volts
8
VCE - Volts
VCE - Volts
2.6
2.4
2.2
120
100
80
60
2.0
TJ = 125ºC
25ºC
- 40ºC
40
1.8
20
1.6
1.4
0
5
6
7
8
9
10
11
12
VGE - Volts
© 2008 IXYS CORPORATION, All rights reserved
13
14
15
4.0
4.5
5.0
5.5
6.0
6.5
7.0
VGE - Volts
7.5
8.0
8.5
9.0
IXGA48N60B3 IXGP48N60B3
IXGH48N60B3
Fig. 7. Transconductance
Fig. 8. Gate Charge
80
16
TJ = - 40ºC
70
60
50
125ºC
40
I C = 40A
I G = 10mA
12
25ºC
VGE - Volts
g f s - Siemens
VCE = 300V
14
30
10
8
6
20
4
10
2
0
0
0
20
40
60
80
100
120
140
0
20
40
IC - Amperes
60
80
100
120
QG - NanoCoulombs
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
10,000
140
Cies
100
1,000
IC - Amperes
Capacitance - PicoFarads
120
Coes
80
60
100
40
Cres
f = 1 MHz
20
10
0
5
10
15
20
25
30
35
0
100
40
TJ = 125ºC
RG = 5Ω
dV / dt < 10V / ns
150
200
250
VCE - Volts
300
350
400
450
500
550
600
650
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width - Seconds
IXYS reserves the right to change limits, test conditions and dimensions.
IXYS REF: G_48N60B3D1(56) 05-05-08-A
IXGA48N60B3 IXGP48N60B3
IXGH48N60B3
Fig. 13. Inductive Switching
Energy Loss vs. Collector Current
5.0
4.0
4.5
I
C
= 60A
3.5
2.0
VCE = 480V
---
3.0
TJ = 125ºC , VGE = 15V
2.5
I C = 30A
1.5
2.0
1.0
----
3.0
VCE = 480V
2.5
2.5
2.0
2.0
1.5
1.5
TJ = 25ºC
1.0
1.0
0.5
0.5
1.5
0.5
1.0
I C = 15A
0.0
0.5
0
5
10
15
20
25
30
35
40
45
50
0.0
55
0.0
15
20
25
30
RG - Ohms
3.5
Eon
I
----
C
45
50
55
60
200
= 60A
RG = 5Ω , VGE = 15V
3.0
40
Fig. 15. Inductive Turn-off
Switching Times vs. Junction Temperature
3.5
Eoff
35
IC - Amperes
Fig. 14. Inductive Switching
Energy Loss vs. Junction Temperature
220
tf
190
3.0
on
E
2.0
I C = 30A
1.5
1.5
1.0
1.0
0.5
0.5
- MilliJoules
2.0
t f - Nanoseconds
2.5
210
200
VCE = 480V
170
190
I
160
C
= 60A, 15A
180
150
170
140
160
I
130
C
= 30A
150
120
0.0
25
35
45
55
65
75
85
95
105
115
140
110
I C = 15A
25
35
45
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
220
220
210
210
200
190
TJ = 125ºC
180
150
170
140
160
130
150
120
140
TJ = 25ºC
110
100
15
20
25
30
35
40
45
85
95
105
115
120
125
50
IC - Amperes
© 2008 IXYS CORPORATION, All rights reserved
55
60
650
tf
td(off) - - - -
600
TJ = 125ºC, VGE = 15V
550
VCE = 480V
190
500
t f - Nanoseconds
200
170
160
75
I
180
C
= 60A
450
170
400
160
350
150
I
C
300
= 30A
140
130
130
120
120
250
I
C
= 15A
200
150
0
5
10
15
20
25
30
RG - Ohms
35
40
45
50
55
t d(off) - Nanoseconds
VCE = 480V
180
230
t d(off) - Nanoseconds
t f - Nanoseconds
td(off) - - - -
RG = 5Ω , VGE = 15V
190
65
Fig. 17. Inductive Turn-off
Switching Times vs. Gate Resistance
210
tf
55
TJ - Degrees Centigrade
TJ - Degrees Centigrade
200
130
I C = 60A, 15A
100
0.0
125
t d(off) - Nanoseconds
2.5
td(off) - - - -
RG = 5Ω , VGE = 15V
180
VCE = 480V
Eoff - MilliJoules
TJ = 125ºC
- MilliJoules
Eoff
- MilliJoules
Eon -
2.5
Eon
RG = 5Ω , VGE = 15V
on
3.0
Eoff
E
4.0
3.5
3.0
on
3.5
3.5
Eoff - MilliJoules
4.5
E
Eoff - MilliJoules
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
IXGA48N60B3 IXGP48N60B3
IXGH48N60B3
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
110
70
60
C
= 60A
50
60
45
50
40
40
I
C
35
= 30A
30
I
10
C
= 15A
0
0
5
10
15
20
25
30
35
40
45
50
55
tr
50
RG = 5Ω , VGE = 15V
td(on) - - - -
27
25ºC < TJ < 125ºC
26
VCE = 480V
45
25
40
24
35
23
30
22
TJ = 25ºC
25
21
25
20
20
20
15
15
10
30
20
28
19
TJ = 125ºC
18
15
55
t d(on) - Nanoseconds
I
70
55
t d(on) - Nanoseconds
VCE = 480V
80
60
65
TJ = 125ºC, VGE = 15V
90
t r - Nanoseconds
td(on) - - - -
t r - Nanoseconds
tr
100
20
25
30
35
40
45
50
55
60
IC - Amperes
RG - Ohms
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
65
28
60
27
55
26
I C = 60A
t r - Nanoseconds
25
45
tr
td(on) - - - -
40
RG = 5Ω , VGE = 15V
24
23
VCE = 480V
35
22
I C = 30A
30
21
25
20
20
19
I
15
C
= 15A
t d(on) - Nanoseconds
50
18
10
17
5
25
35
45
55
65
75
85
95
105
115
16
125
TJ - Degrees Centigrade
IXYS reserves the right to change limits, test conditions and dimensions.
IXYS REF: G_48N60B3D1(56) 05-05-08-A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.