IXGI48N60C3*
IXGA48N60C3
IXGP48N60C3
IXGH48N60C3
GenX3TM
600V IGBT
High-Speed PT IGBTs for
40-100kHz Switching
VCES =
IC110 =
VCE(sat)
tfi(typ) =
*Obsolete Part Number
Symbol
Test Conditions
VCES
TC = 25°C to 150°C
600
V
VCGR
TJ = 25°C to 150°C, RGE = 1M
600
V
VGES
Continuous
± 20
V
VGEM
Transient
± 30
V
IC25
IC110
TC = 25°C
TC = 110°C
75
48
A
A
ICM
TC = 25°C, 1ms
250
A
IA
TC = 25°C
30
A
EAS
TC = 25°C
300
mJ
SSOA
VGE = 15V, TVJ = 125°C, RG = 3
ICM = 100
A
(RBSOA)
Clamped Inductive Load
VCE VCES
PC
TC = 25°C
600V
48A
2.5V
38ns
Maximum Ratings
Features
300
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
TJ
TL
Maximum Lead Temperature for Soldering
300
°C
TSOLD
1.6 mm (0.062in.) from Case for 10s
260
°C
FC
Md
Mounting Force (TO-263)
Mounting Torque (TO-247&TO-220)
10..65 / 2.5..14.6
1.13/10
N/lb.
Nm/lb.in.
Weight
TO-262 Lead
TO-263
TO-220
TO-247
0.4
2.5
3.0
6.0
g
g
g
g
Advantages
Characteristic Values
(TJ = 25°C Unless Otherwise Specified)
Min.
BVCES
IC = 250A, VGE = 0V
600
VGE(th)
IC = 250A, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
IGES
VCE = 0V, VGE = ± 20V
VCE(sat)
IC = 30A, VGE = 15V, Note 1
Typ.
High Power Density
Low Gate Drive Requirement
Applications
Symbol Test Conditions
Optimized for Low Switching Losses
Square RBSOA
Avalanche Rated
Fast Switching
International Standard Packages
High Frequency Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
Max.
V
5.5
V
25 A
250 A
TJ = 125°C
±100 nA
TJ = 125°C
© 2018 IXYS CORPORATION, All Rights Reserved
2.3
1.8
2.5
V
V
DS99953C(11/18)
IXGI48N60C3 IXGA48N60C3
IXGP48N60C3 IXGH48N60C3
Symbol
Test Conditions
(TJ = 25°C Unless Otherwise Specified)
gfs
Characteristic Values
Min.
Typ.
Max.
IC = 30A, VCE = 10V, Note 1
20
TO-262 Lead
(IXGI)
30
S
1960
pF
207
pF
Cres
66
pF
Qg
77
nC
16
nC
Qgc
32
nC
td(on)
19
ns
26
ns
0.41
mJ
Cies
Coes
Qge
VCE = 25V, VGE = 0V, f = 1MHz
IC = 30A, VGE = 15V, VCE = 0.5 • VCES
tri
Inductive Load, TJ = 25°C
Eon
IC = 30A, VGE = 15V
td(off)
VCE = 400V, RG = 3
60
Note 2
38
tfi
100
ns
ns
Eoff
0.23
0.42
td(on)
19
ns
26
ns
0.65
mJ
Inductive Load, TJ = 125°C
Eon
IC = 30A, VGE = 15V
td(off)
VCE = 400V, RG = 3
92
ns
tfi
Note 2
95
ns
0.57
mJ
RthJC
RthCS
0.42 °C/W
(TO-247)
(TO-220)
0.21
0.50
C
TO-263
(IXGA)
G
E
C (Tab)
TO-220
(IXGP)
°C/W
°C/W
G
C
E
C (Tab)
TO-247
(IXGH)
G
C
G = Gate
E = Emitter
Notes:
C (Tab)
E
mJ
tri
Eoff
G
E
C (Tab)
C
= Collector
Tab = Collector
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(Clamp), TJ or RG.
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGI48N60C3 IXGA48N60C3
IXGP48N60C3 IXGH48N60C3
Fig. 2. Extended Output Characteristics @ TJ = 25oC
o
Fig. 1. Output Characteristics @ TJ = 25 C
300
60
VGE = 15V
13V
11V
270
13V
210
40
9V
30
20
180
150
11V
120
90
60
10
7V
9V
30
0
7V
0
0
0.4
0.8
1.2
1.6
2
2.4
2.8
0
3.2
2
4
6
8
10
12
14
16
VCE - Volts
VCE - Volts
Fig. 3. Output Characteristics @ TJ = 125oC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
1.2
60
VGE = 15V
13V
11V
18
20
VGE = 15V
1.1
VCE(sat) - Normalized
50
40
I C - Amperes
VGE = 15V
240
I C - Amperes
I C - Amperes
50
9V
30
20
I C = 60A
1.0
0.9
I C = 30A
0.8
0.7
7V
10
0.6
I C = 15A
0.5
0
0
0.4
0.8
1.2
1.6
2
2.4
25
2.8
50
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
100
125
150
Fig. 6. Input Admittance
100
5.0
o
90
TJ = 25 C
4.5
80
70
I C - Amperes
4.0
VCE - Volts
75
TJ - Degrees Centigrade
I C = 60A
30A
15A
3.5
3.0
60
o
TJ = 125 C
50
o
25 C
o
- 40 C
40
30
20
2.5
10
2.0
0
7
8
9
10
11
12
13
VGE - Volts
© 2018 IXYS CORPORATION, All Rights Reserved
14
15
5.0
5.5
6.0
6.5
7.0
7.5
8.0
VGE - Volts
8.5
9.0
9.5
10.0
IXGI48N60C3 IXGA48N60C3
IXGP48N60C3 IXGH48N60C3
Fig. 7. Transconductance
Fig. 8. Gate Charge
50
16
o
TJ = - 40 C
14
VCE = 300V
12
I G = 10 mA
I C = 30A
40
30
VGE - Volts
g f s - Siemens
o
25 C
o
125 C
20
10
8
6
4
10
2
0
0
0
20
40
60
80
100
0
120
10
20
30
I C - Amperes
40
50
60
70
80
QG - NanoCoulombs
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
10,000
f = 1 MHz
100
80
1,000
I C - Amperes
Capacitance - PicoFarads
Cies
C oes
100
60
40
o
TJ = 125 C
C res
20
10
0
5
10
15
20
25
30
35
0
200
40
RG = 3Ω
dv / dt < 10V / ns
250
300
350
VCE - Volts
400
450
500
550
600
650
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - K / W
1
0.1
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
0.1
1
10
IXGI48N60C3 IXGA48N60C3
IXGP48N60C3 IXGH48N60C3
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
2.4
2.6
Eoff
Eoff
2.2
I C = 30A
1.0
0.4
I C = 15A
0.6
0.0
E off - MilliJoules
0.8
10
15
20
25
30
o
0.8
0.4
0.4
0
15
35
20
25
30
RG - Ohms
2.0
Eon
tfi
0.4
t f i - Nanoseconds
Eoff - MilliJoules
I C = 30A
I C = 15A
0.0
85
95
105
115
250
I C = 60A
100
90
150
100
70
50
0
5
10
15
25
30
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
160
110
td(off)
tfi
140
100
35
o
TJ = 125 C
80
80
60
70
40
t f i - Nanoseconds
90
100
100
90
I C = 60A
80
80
I C = 30A
60
70
I C = 15A
60
40
50
20
o
110
VCE = 400V
120
120
60
TJ = 25 C
20
15
20
25
30
35
40
45
50
I C - Amperes
© 2018 IXYS CORPORATION, All Rights Reserved
55
60
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
50
125
t d(off) - Nanoseconds
t d(off) - Nanoseconds
100
td(on)
RG = 3Ω, VGE = 15V
VCE = 400V
t f i - Nanoseconds
20
RG - Ohms
RG = 3Ω, VGE = 15V
120
200
I C = 30A
80
0.0
125
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
tfi
300
110
TJ - Degrees Centigrade
140
td(off)
o
TJ = 125 C, VGE = 15V
I C = 15A
0.4
75
60
t d(off) - Nanoseconds
0.8
- MilliJoules
0.8
on
1.2
65
55
VCE = 400V
E
1.2
55
50
350
120
1.6
VCE = 400V
45
45
130
I C = 60A
RG = 3ΩVGE = 15V
35
40
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
2.0
25
35
I C - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
1.6
o
TJ = 125 C, 25 C
0.8
0.0
0.2
5
1.2
- MilliJoules
- MilliJoules
1.4
1.2
on
on
1.2
E
E
1.8
I C = 60A
Eoff
1.6
VCE = 400V
1.6
0
Eon
RG = 3ΩVGE = 15V
1.6
VCE = 400V
E off - MilliJoules
2
Eon
o
TJ = 125 C , VGE = 15V
2.0
2.0
IXGI48N60C3 IXGA48N60C3
IXGP48N60C3 IXGH48N60C3
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
140
120
50
tri
120
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
td(on)
45
o
TJ = 125 C, VGE = 15V
tri
100
35
60
30
40
25
20
20
I C = 15A, 30A
0
0
5
10
15
15
20
25
30
t r i - Nanoseconds
t r i - Nanoseconds
80
24
VCE = 400V
80
o
22
o
25 C < TJ < 125 C
60
20
40
18
20
16
0
35
t d(on) - Nanoseconds
t d(on) - Nanoseconds
40
I C = 60A
td(on)
RG = 3Ω, VGE = 15V
VCE = 400V
100
26
14
15
20
25
30
35
40
45
50
55
60
I C - Amperes
RG - Ohms
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
80
25
70
24
I C = 60A
tri
23
td(on)
RG = 3Ω, VGE = 15V
50
22
VCE = 400V
40
21
I C = 30A
30
20
20
19
10
18
I C = 15A
0
25
35
45
55
65
75
85
95
105
t d(on) - Nanoseconds
t r i - Nanoseconds
60
115
17
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS REF: G_48N60C3(5D) 6-23-11-C
IXGI48N60C3 IXGA48N60C3
IXGP48N60C3 IXGH48N60C3
TO - 262 Leaded Outline
Pins: 1 - Gate 2,4 - Collector
3 - Emitter
TO-263 Outline
TO-247 Outline
TO-220 Outline
1 - Gate
2,4 - Drain
3 - Source
© 2018 IXYS CORPORATION, All Rights Reserved
1 - Gate
2,4 - Drain
3 - Source
1 - Gate
2,4 - Drain
3 - Source
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.