IXGB200N60B3
GenX3TM 600V IGBT
VCES =
IC110 =
VCE(sat) ≤
tfi(typ) =
Medium speed low Vsat PT
IGBTs 5-40 kHz switching
PLUS264TM (IXGB)
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 150°C
TJ = 25°C to 150°C, RGE = 1 MΩ
600
600
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
TC = 25°C (limited by leads)
75
A
IC110
TC = 110°C (chip capability)
200
A
ICM
TC = 25°C, 1ms
600
A
SSOA
VGE = 15V, TVJ = 125°C, RG = 1Ω
ICM = 300
A
(RBSOA)
Clamped inductive load @ VCE ≤ 600V
PC
TC = 25°C
1250
W
-55 ... +150
°C
TJM
150
°C
z
Tstg
-55 ... +150
°C
z
TJ
TL
Maximum lead temperature for soldering
300
°C
TSOLD
Plastic body for 10s
260
°C
FC
Mounting force
30..120/6.7..27
N/lb.
10
g
Weight
600V
200A
1.5V
183ns
G
C
(TAB)
E
G = Gate
E = Emitter
C
= Collector
TAB = Collector
Features
NPT IGBT technology
Low switching losses
z
Low tail current
z
No latch up
z
Short circuit capability
z
Positive temperature coefficient
for easy paralleling
z
MOS input, voltage controlled
z
Optional ultra fast diode
z
International standard package
Advantages
z
z
Symbol
Test Conditions
(TJ = 25°C, unless otherwise specified)
BVCES
VGE(th)
IC = 250μA, VGE = 0V
IC = 250μA, VCE = VGE
ICES
VCE = VCES
VGE = 0V
Characteristic Values
Min.
Typ.
Max.
600
3.0
TJ = 125°C
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC = 100A, VGE = 15V, Note 1
IC = 200A
TJ = 125°C
© 2008 IXYS CORPORATION, All rights reserved
1.35
1.65
1.75
z
5.0
V
V
25
5.0
μA
mA
z
±100
nA
z
1.50
V
V
V
z
Space savings
High power density power supplies
Low gate charge results in simple
drive requirement
Applications
z
z
z
High Frequency Inverters
UPS and Welding
AC and DC Motor Controls
Power Supplies and Drivers for
Solenoids, Relays and Connectors
PFC Circuits
Battery Chargers
DS99929A(05/08)
IXGB200N60B3
Symbol
Test Conditions
(TJ = 25°C, unless otherwise specified)
gfs
Characteristic Values
Min.
Typ.
Max.
IC = 60A, VCE = 10V, Note 1
95
ISOPLUS264TM (IXGB) Outline
160
S
26
1260
97
nF
pF
pF
750
nC
115
245
nC
nC
td(on)
44
ns
tri
Eon
83
1.6
ns
mJ
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 100A, VGE = 15V, VCE = 0.5 • VCES
Inductive load, TJ = 25°°C
IC = 100A, VGE = 15V
310
450
ns
183
300
ns
Eoff
2.9
4.5
mJ
td(on)
tri
Eon
td(off)
tfi
Eoff
42
80
2.4
430
300
4.2
ns
ns
mJ
ns
ns
mJ
0.13
0.10 °C/W
°C/W
td(off)
tfi
VCE = 300V, RG = 1Ω
Inductive load, TJ = 125°°C
IC = 100A, VGE = 15V
VCE = 300V, RG = 1Ω
RthJC
RthCS
Note: Bottom heatsink meets
2500Vrms Isolation to the other
Ref: IXYS CO 0128
Note 1: Pulse test, t ≤ 300μs; duty cycle, d ≤ 2%.
PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from data gathered during objective characterizations of preliminary engineering lots; but also may yet
contain some information supplied during a pre-production design evaluation. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGB200N60B3
Fig. 1. Output Characteristics
@ 25ºC
Fig. 2. Extended Output Characteristics
@ 25ºC
200
350
VGE = 15V
11V
9V
180
160
140
120
100
80
200
150
6V
6V
60
7V
250
7V
IC - Amperes
IC - Amperes
VGE = 15V
11V
9V
300
100
40
20
50
5V
5V
0
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0
1
2
3
160
7
8
9
125
150
VGE = 15V
1.20
VCE(sat) - Normalized
9V
140
IC - Amperes
6
1.25
VGE = 15V
13V
11V
180
5
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics
@ 125ºC
200
4
VCE - Volts
VCE - Volts
120
7V
100
80
60
I
C
= 200A
I
C
= 150A
I
C
= 100A
1.15
1.10
1.05
1.00
0.95
0.90
40
20
0.85
5V
0
0.80
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
-50
-25
VCE - Volts
0
25
50
75
100
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
160
3.4
3.2
TJ = 25ºC
140
3.0
120
IC - Amperes
2.8
VCE - Volts
2.6
I
2.4
2.2
C
= 200A
150A
100A
2.0
1.8
TJ = 125ºC
25ºC
- 40ºC
100
80
60
40
1.6
20
1.4
1.2
0
5
6
7
8
9
10
11
VGE - Volts
© 2008 IXYS CORPORATION, All rights reserved
12
13
14
15
3.5
4.0
4.5
5.0
VGE - Volts
5.5
6.0
6.5
IXGB200N60B3
Fig. 8. Gate Charge
Fig. 7. Transconductance
16
250
TJ = - 40ºC
225
200
25ºC
I C = 100A
I G = 10mA
12
175
125ºC
150
VGE - Volts
g f s - Siemens
VCE = 300V
14
125
100
10
8
6
75
4
50
2
25
0
0
0
20
40
60
80
100
120
140
160
180
200
0
100
200
IC - Amperes
300
400
500
600
700
800
QG - NanoCoulombs
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
100,000
350
10,000
250
IC - Amperes
Capacitance - PicoFarads
300
Cies
1,000
Coes
200
150
100
100
TJ = 125ºC
50
Cres
f = 1 MHz
10
0
5
10
15
20
25
30
35
40
RG = 1Ω
dV / dt < 10V / ns
0
100
200
VCE - Volts
300
400
500
600
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.000
0.100
0.010
0.001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS reserves the right to change limits, test conditions, and dimensions.
0.1
1
10
IXGB200N60B3
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
Fig. 13. Inductive Switching
Energy Loss vs. Collector Current
4.5
3.5
5.0
3.0
Eoff
4.5
= 100A
3.0
---
- MilliJoules
3.0
Eon -
2.0
TJ = 125ºC , VGE = 15V
VCE = 300V
2.5
1.5
I C = 50A
2.0
1.0
1.5
2
3
4
5
6
7
8
9
3.0
2.5
1.5
2.0
1.2
TJ = 25ºC
1.5
0.6
0.5
0.3
50
10
55
60
65
70
4.5
2.0
1.2
1.5
0.9
I C = 50A
1.0
0.5
65
75
85
95
105
115
- MilliJoules
1.5
t f - Nanoseconds
on
1.8
2.5
55
1300
290
I
C
800
270
700
260
I
C
600
= 50A
500
240
0.3
125
400
230
300
1
2
3
4
5
500
340
300
480
320
tf
280
460
300
RG = 1Ω, VGE = 15V
440
420
td(off) - - - -
RG = 1Ω , VGE = 15V
400
VCE = 300V
380
180
360
TJ = 25ºC
340
80
85
IC - Amperes
© 2008 IXYS CORPORATION, All rights reserved
90
95
400
I C = 50A, 100A
380
360
340
160
320
300
120
75
420
180
140
70
440
200
300
100
65
460
VCE = 300V
220
120
60
10
480
240
320
55
td(off) - - - -
260
140
50
9
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
280
125
t d(off) - Nanoseconds
260
160
8
500
280
t f - Nanoseconds
TJ = 125ºC
200
7
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
320
220
6
RG - Ohms
t d(off) - Nanoseconds
t f - Nanoseconds
900
= 100A
280
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
tf
1100
1000
250
0.6
1200
300
TJ - Degrees Centigrade
240
0.0
100
t d(off) - Nanoseconds
I C = 100A
45
95
td(off) - - - TJ = 125ºC, VGE = 15V
VCE = 300V
310
2.1
3.0
35
90
tf
320
2.4
VCE = 300V
25
85
330
E
Eoff - MilliJoules
----
RG = 1Ω , VGE = 15V
3.5
80
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
2.7
4.0
75
IC - Amperes
Fig. 14. Inductive Switching
Energy Loss vs. Junction Temperature
Eon
0.9
1.0
RG - Ohms
Eoff
1.8
0.0
0.5
1
2.1
TJ = 125ºC
- MilliJoules
on
Eoff
2.4
VCE = 300V
3.5
on
2.5
2.7
E
3.5
----
RG = 1Ω , VGE = 15V
4.0
E
Eoff - MilliJoules
C
Eoff - MilliJoules
I
4.0
Eon
IXGB200N60B3
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
150
td(on) - - - -
TJ = 125ºC, VGE = 15V
C
= 100A
90
80
I
C
= 50A
4
5
6
7
8
9
60
42
TJ = 25ºC, 125ºC
40
40
38
20
30
50
3
44
40
60
2
70
50
70
30
46
VCE = 300V
50
10
55
60
65
70
75
80
85
90
95
t d(on) - Nanoseconds
100
I
t d(on) - Nanoseconds
110
td(on) - - - -
RG = 1Ω , VGE = 15V
80
120
VCE = 300V
1
48
tr
t r - Nanoseconds
tr
130
t r - Nanoseconds
90
140
36
100
IC - Amperes
RG - Ohms
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
90
48
80
46
t r - Nanoseconds
70
tr
44
td(on) - - - -
RG = 1Ω , VGE = 15V
60
42
VCE = 300V
50
40
I
C
= 50A
40
t d(on) - Nanoseconds
I C = 100A
38
30
25
35
45
55
65
75
85
95
105
115
36
125
TJ - Degrees Centigrade
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS REF: G_200N60B3(97)3-28-08-A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.