High Voltage IGBT
IXGF20N300
VCES = 3000V
= 22A
IC25
VCE(sat) ≤ 3.2V
For Capacitor Discharge
Applications
( Electrically Isolated Tab)
ISOPLUS i4-PakTM
Symbol
Test Conditions
VCES
TJ = 25°C to 150°C
3000
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
3000
V
VGES
Continuous
± 20
V
VGEM
Transient
± 30
V
IC25
TC = 25°C
22
A
IC90
TC = 90°C
ICM
TC = 25°C, VGE = 20V, 1ms
SSOA
VGE = 20V, TVJ = 125°C, RG = 10Ω
(RBSOA)
Clamped Inductive Load
PC
TC = 25°C
Maximum Ratings
14
A
103
A
ICM = 200
A
@0.8 • VCES
100
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
300
260
°C
°C
20..120/4.5..27
Nm/lb-in.
4000
V~
6
g
TJ
TL
TSOLD
1.6 mm (0.062 in.) from Case for 10s
Plastic Body for 10s
FC
Mounting Force
VISOL
50/60Hz, 1 Minute
Weight
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
IC
= 250μA, VGE = 0V
3000
VGE(th)
IC
= 250μA, VCE = VGE
3.0
ICES
VCE = 0.8 • VCES, VGE = 0V
Note 2, TJ = 125°C
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC
= 20A, VGE = 15V, Note 1
© 2009 IXYS CORPORATION, All Rights Reserved
2
Isolated Tab
5
1 = Gate
2 = Emitter
5 = Collector
Features
Silicon Chip on Direct-Copper Bond
(DCB) Substrate
Isolated Mounting Surface
4000V Electrical Isolation
High Peak Current Capability
Low Saturation Voltage
Molding Epoxies Meet UL 94 V-0
Flammability Classification
Applications
Capacitor Discharge
Pulser Circuits
Characteristic Values
Min.
Typ.
Max.
BVCES
1
V
5.0
V
25 μA
2 mA
±100
nA
3.2
V
Advantages
High Power Density
Easy to Mount
DS100099B(11/09)
IXGF20N300
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
gfs
IC = 20A, VCE = 10V, Note 1
IC(ON)
VGE = 20V, VCE = 20V, Note 1
Characteristic Values
Min.
Typ.
Max.
8
ISOPLUS i4-PakTM (HV) Outline
12
S
180
A
1125
pF
48
pF
Cres
16
pF
Qg
31
nC
5.8
nC
12
nC
38
ns
486
145
ns
ns
210
ns
0.15
30
1.25 °C/W
°C/W
°C/W
Cies
Coes
Qge
VCE = 25V, VGE = 0V, f = 1MHz
IC = 20A, VGE = 15V, VCE = 600V
Qgc
td(on)
tr
td(off)
tf
Resistive Switching Times
IC = 20A, VGE = 15V
VCE = 960V, RG = 10Ω
RthJC
RthCS
RthJA
Pin 1 = Gate
Pin 2 = Emitter
Pin 3 = Collector
Tab 4 = Isolated
Notes:
1. Pulse test, t < 300μs, duty cycle, d < 2%.
2. Device must be heatsunk for high-temperature leakage current
measurements to avoid thermal runaway.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGF20N300
Fig. 1. Output Characteristics @ T J = 25ºC
Fig. 2. Extended Output Characteristics @ T J = 25ºC
80
220
VGE = 25V
20V
70
VGE = 25V
200
180
20V
160
15V
IC - Amperes
IC - Amperes
60
50
40
10V
30
140
120
15V
100
80
10V
60
20
40
10
20
5V
5V
0
0
0
1
2
3
4
5
0
6
2
4
6
8
10
80
16
18
20
22
24
3.8
VGE = 25V
20V
70
VGE = 15V
3.4
VCE(sat) - Normalized
60
15V
IC - Amperes
14
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ T J = 125ºC
50
40
10V
30
20
3.0
I
C
= 80A
I
C
= 40A
I
C
= 20A
2.6
2.2
1.8
1.4
10
1.0
5V
0
0.6
0
1
2
3
4
5
6
7
8
-50
-25
0
VCE - Volts
25
50
75
100
125
150
12
13
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
80
10
VGE = 15V
9
TJ = - 40ºC
25ºC
125ºC
70
60
I
7
C
IC - Amperes
8
VCE - Volts
12
VCE - Volts
VCE - Volts
= 80A
6
5
50
40
30
40A
20
4
10
3
20A
0
2
7
8
9
10
11
12
13
14
15
VGE - Volts
© 2009 IXYS CORPORATION, All Rights Reserved
16
17
18
19
4
5
6
7
8
VGE - Volts
9
10
11
IXGF20N300
Fig. 7. Transconductance
Fig. 8. Gate Charge
16
18
TJ = - 40ºC
16
125ºC
10
I C = 20A
I G = 10mA
12
25ºC
VGE - Volts
g f s - Siemens
14
12
VCE = 600V
14
8
10
8
6
6
4
4
2
2
0
0
0
10
20
30
40
50
60
70
80
0
90
4
8
12
IC - Amperes
16
20
24
28
32
30
35
40
QG - NanoCoulombs
Fig. 9. Reverse-Bias Safe Operating Area
Fig. 10. Capacitance
10,000
220
f = 1 MHz
200
Capacitance - PicoFarads
180
IC - Amperes
160
140
120
100
80
60
40
20
0
600
TJ = 125ºC
1,000
Cies
Coes
100
RG = 10Ω
dv / dt < 10V / ns
Cres
10
900
1200
1500
1800
2100
2400
2700
3000
0
5
10
15
20
25
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z ( t h ) JC - ºC / W
10.0
1.0
0.1
0.0
0.0001
0.001
0.01
0.1
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
1
10
IXGF20N300
Fig. 13. Resistive Turn-on Rise Time
vs. Collector Current
Fig. 12. Resistive Turn-on Rise Time
vs. Junction Temperature
1000
1100
RG = 10Ω , VGE = 15V
1000
900
VCE = 960V
t r - Nanoseconds
C
TJ = 125ºC
= 40A
t r - Nanoseconds
I
900
800
I
700
C
= 20A
600
800
RG = 10Ω , VGE = 15V
700
VCE = 960V
600
500
500
TJ = 25ºC
400
400
300
300
25
35
45
55
65
75
85
95
105
115
125
20
30
40
50
TJ - Degrees Centigrade
2,000
td(on) - - - -
300
1,400
200
1,200
150
I C = 20A, 40A
1,000
100
800
170
230
tf
220
RG = 10Ω, VGE = 15V
td(off) - - - -
165
160
VCE = 960V
210
200
155
150
I C = 20A
190
145
180
140
170
135
160
130
I C = 40A
150
50
125
140
600
10
120
130
0
1000
100
25
35
45
RG - Ohms
200
75
td(off) - - - -
900
85
95
105
115
115
125
2700
tr
800
180
RG = 10Ω, VGE = 15V
180
140
160
120
TJ = 125ºC
140
2400
2100
VCE = 960V
600
1800
500
1500
400
1200
300
900
I C = 20A, 40A
200
600
100
300
t d(off) - Nanoseconds
160
t d(off) - Nanoseconds
TJ = 25ºC
td(on) - - - -
TJ = 125ºC, VGE = 15V
700
t f - Nanoseconds
tf
VCE = 960V
t f - Nanoseconds
65
Fig. 17. Resistive Turn-off Switching Times
vs. Gate Resistance
240
200
55
TJ - Degrees Centigrade
Fig. 16. Resistive Turn-off Switching Times
vs. Collector Current
220
80
t d(off) - Nanoseconds
250
t d(on) - Nanoseconds
VCE = 960V
t f - Nanoseconds
TJ = 125ºC, VGE = 15V
1,600
t r - Nanoseconds
240
350
tr
70
Fig. 15. Resistive Turn-off Switching Times
vs. Junction Temperature
Fig. 14. Resistive Turn-on Switching Times
vs. Gate Resistance
1,800
60
IC - Amperes
100
120
80
20
30
40
50
60
IC - Amperes
© 2009 IXYS CORPORATION, All Rights Reserved
70
80
0
10
100
0
1000
RG - Ohms
IXYS REF: G_20N250(4P-P528)11-18-09-B
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.