High Voltage IGBT
IXGF36N300
VCES = 3000V
= 36A
IC25
VCE(sat) ≤ 2.7V
For Capacitor Discharge
Applications
( Electrically Isolated Tab)
ISOPLUS i4-PakTM
Symbol
Test Conditions
VCES
TJ = 25°C to 150°C
3000
V
VGES
Continuous
± 20
V
VGEM
Transient
± 30
V
IC25
TC = 25°C
36
A
IC110
TC = 110°C
ICM
TC = 25°C, VGE = 20V, 1ms
SSOA
VGE = 20V, TVJ = 125°C, RG = 2Ω
(RBSOA)
Clamped Inductive Load
PC
TC = 25°C
Maximum Ratings
18
A
400
A
ICM = 300
A
VCE ≤ 0.8 • VCES
TJ
W
-55 ... +150
°C
150
°C
Tstg
-55 ... +150
°C
300
260
°C
°C
20..120/4.5..27
Nm/lb-in.
4000
V~
5
g
1.6 mm (0.062 in.) from Case for 10s
Plastic Body for 10s
FC
Mounting Force
VISOL
50/60Hz, 1 minute
Weight
2
Isolated Tab
5
1 = Gate
2 = Emitter
5 = Collector
Features
160
TJM
TL
TSOLD
1
Silicon Chip on Direct-Copper Bond
(DCB) Substrate
Isolated Mounting Surface
4000V Electrical Isolation
High Peak Current Capability
Low Saturation Voltage
Molding Epoxies Meet UL 94 V-0
Flammability Classification
Applications
Capacitor Discharge
Pulser Circuits
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250μA, VGE = 0V
3000
VGE(th)
IC
= 250μA, VCE = VGE
3.0
ICES
VCE = 0.8 • VCES, VGE = 0V
Note 2 ,TJ = 125°C
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC
IC
= 36A, VGE = 15V, Note 1
= 100A
© 2009 IXYS CORPORATION, All Rights Reserved
Advantages
V
5.0
V
50 μA
2 mA
±200
nA
2.7
5.2
V
V
High Power Density
Easy to Mount
DS99979C(11/09)
IXGF36N300
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
gfs
IC = 36A, VCE = 10V, Note 1
IC(ON)
VGE = 15V, VCE = 20V, Note 1
Characteristic Values
Min.
Typ.
Max.
15
Cies
Coes
25
S
360
A
2690
pF
123
pF
34
pF
136
nC
21
nC
52
nC
36
ns
185
ns
215
ns
540
ns
0.15
30
0.78 °C/W
°C/W
°C/W
VCE = 25V, VGE = 0V, f = 1MHz
Cres
Qg
Qge
IC = 30A, VGE = 15V, VCE = 600V
Qgc
td(on)
tr
td(off)
tf
Resistive Switching Times
IC = 36A, VGE = 15V
VCE = 1500V, RG = 2Ω
RthJC
RthCS
RthJA
ISOPLUS i4-PakTM (HV) Outline
Pin 1 = Gate
Pin 2 = Emitter
Pin 3 = Collector
Tab 4 = Isolated
Notes:
1. Pulse test, t < 300μs, duty cycle, d < 2%.
2. Device must be heatsunk for high-temperature leakage current
measurements to avoid thermal runaway.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGF36N300
Fig. 1. Output Characteristics @ T J = 25ºC
Fig. 2. Extended Output Characteristics @ T J = 25ºC
80
400
VGE = 25V
20V
15V
13V
11V
IC - Amperes
60
VGE = 25V
20V
350
15V
300
13V
50
IC - Amperes
70
9V
40
30
7V
20
250
200
11V
150
9V
100
10
7V
50
5V
0
5V
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0
2
4
6
8
12
14
16
18
20
VCE - Volts
VCE - Volts
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ T J = 125ºC
1.8
80
VGE = 25V
20V
15V
13V
11V
60
VGE = 15V
1.6
50
VCE(sat) - Normalized
70
IC - Amperes
10
9V
40
7V
30
I
C
= 72A
I
C
= 36A
I
C
= 18A
1.4
1.2
1.0
20
10
0.8
5V
0
0.6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
-50
-25
0
25
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
75
100
125
150
Fig. 6. Input Admittance
6.0
80
5.5
70
TJ = 25ºC
5.0
60
I
4.0
C
IC - Amperes
4.5
VCE - Volts
50
TJ - Degrees Centigrade
= 72A
3.5
3.0
50
40
TJ = 125ºC
25ºC
- 40ºC
30
36A
20
2.5
10
2.0
18A
0
1.5
5
6
7
8
9
10
11
VGE - Volts
© 2009 IXYS CORPORATION, All Rights Reserved
12
13
14
15
4.0
4.5
5.0
5.5
6.0
6.5
VGE - Volts
7.0
7.5
8.0
8.5
9.0
IXGF36N300
Fig. 7. Transconductance
Fig. 8. Gate Charge
40
16
TJ = - 40ºC
VCE = 600V
14
30
25ºC
12
25
125ºC
10
VGE - Volts
g f s - Siemens
35
20
15
8
6
10
4
5
2
0
I C = 30A
I G = 10mA
0
0
10
20
30
40
50
60
70
80
90
0
20
40
IC - Amperes
60
80
100
120
140
QG - NanoCoulombs
Fig. 10. Capacitance
Fig. 9. Reverse-Bias Safe Operating Area
10,000
350
f = 1 MHz
Capacitance - PicoFarads
300
IC - Amperes
250
200
150
100
50
0
500
TJ = 125ºC
Cies
1,000
Coes
100
RG = 2Ω
dv / dt < 10V / ns
Cres
10
750
1000
1250
1500
1750
2000
2250
2500
2750
0
3000
5
10
15
20
25
30
35
40
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.000
0.100
0.010
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
10
IXGF36N300
Fig. 13. Resistive Turn-on
Rise Time vs. Drain Current
Fig. 12. Resistive Turn-on
Rise Time vs. Junction Temperature
450
450
RG = 2Ω , VGE = 15V
400
VCE = 1500V
350
300
I C = 72A
250
TJ = 125ºC
350
t r - Nanoseconds
t r - Nanoseconds
400
RG = 2Ω , VGE = 15V
300
VCE = 1500V
250
200
200
I C = 36A
150
TJ = 25ºC
150
100
100
25
35
45
55
65
75
85
95
105
115
125
15
20
25
30
35
40
TJ - Degrees Centigrade
Fig. 14. Resistive Turn-on
Switching Times vs. Gate Resistance
1,000
td(on) - - - -
tf
70
75
td(off) - - - -
230
1,000
100
t f - Nanoseconds
I C = 36A
1200
100
10
1000
10
1000
100
210
I
800
C
= 36A
200
600
190
400
180
I
C
= 72A
170
0
25
35
45
RG - Ohms
55
65
75
85
95
105
115
160
125
TJ - Degrees Centigrade
Fig. 16. Resistive Turn-off
Switching Times vs. Drain Current
Fig. 17. Resistive Turn-off
Switching Times vs. Gate Resistance
2400
10,000
290
10,000
tf
td(off) - - - -
270
RG = 2Ω, VGE = 15V
TJ = 125ºC
230
800
210
VCE = 1500V
t d(off) - Nanoseconds
250
t d(off) - Nanoseconds
VCE = 1500V
1600
td(off) - - - -
TJ = 125ºC, VGE = 15V
t f - Nanoseconds
tf
2000
220
VCE = 1500V
t d(off) - Nanoseconds
I C = 72A
t d(on) - Nanoseconds
t r - Nanoseconds
65
RG = 2Ω, VGE = 15V
200
t f - Nanoseconds
60
240
1400
VCE = 1500V
1200
55
1600
TJ = 125ºC, VGE = 15V
1
50
Fig. 15. Resistive Turn-off
Switching Times vs. Junction Temperature
10,000
tr
45
IC - Amperes
I C = 36A
1,000
1,000
I C = 72A
TJ = 25ºC
400
190
0
170
15
20
25
30
35
40
45
50
55
60
IC - Amperes
© 2009 IXYS CORPORATION, All Rights Reserved
65
70
75
100
1
10
100
100
1000
RG - Ohms
IXYS REF: G_36N300(8P)11-23-09-D
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.