Preliminary Technical Information
GenX3TM 300V IGBT
IXGH100N30C3
VCES
IC110
VCE(sat)
tfi typ
High Speed PT IGBTs for
50-150kHz switching
Test Conditions
Maximum Ratings
VCES
TJ = 25°C to 150°C
300
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
300
V
VGES
Continuous
±20
V
VGEM
Transient
±30
V
IC25
TC = 25°C (limited by leads)
75
A
IC110
TC = 110°C (chip capability)
100
A
ICM
TC = 25°C, 1ms
500
A
IA
TC = 25°C
100
A
EAS
TC = 25°C
500
mJ
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 2Ω
Clamped inductive load @ ≤ 300V
ICM = 200
A
PC
TC = 25°C
G
460
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
300
260
°C
°C
1.13/10
Nm/lb.in.
6
g
Md
Mounting torque
Weight
z
z
z
z
z
z
Test Conditions
BVCES
VGE(th)
IC
IC
ICES
VCE = VCES
VGE = 0V
Characteristic Values
(TJ = 25°C, unless otherwise specified)
Min. Typ.
Max.
= 250µA, VGE = 0V
= 250µA, VCE = VGE
IGES
VCE = 0V, VGE = ± 20V
VCE(sat)
IC
300
2.5
TJ = 125°C
= 100A, VGE = 15V
TJ = 125°C
© 2007 IXYS CORPORATION, All rights reserved
1.53
1.59
5.0
V
V
50
1.0
µA
mA
±100
nA
1.85
V
V
(TAB)
C = Collector
TAB = Collector
High Frequency IGBT
Square RBSOA
High avalanche capability
Drive simplicity with MOS Gate
Turn-On
High current handling capability
Applications
z
Symbol
E
Features
z
Maximum lead temperature for soldering
1.6mm (0.062 in.) from case for 10s
C
G = Gate
E = Emitter
z
TL
TSOLD
300V
100A
1.85V
94ns
TO-247 (IXGH)
Symbol
TJ
=
=
≤
=
z
z
z
PFC Circuits
PDP Systems
Switched-mode and resonant-mode
converters and inverters
SMPS
AC motor speed control
DC servo and robot drives
DC choppers
DS99877A(01/08)
IXGH100N30C3
Symbol
Test Conditions
(TJ = 25°C, unless otherwise specified)
gfs
Min.
IC = 60A, VCE = 10V,
Pulse test, t ≤ 300µs; duty cycle, d ≤ 2%.
Characteristic Values
Typ.
Max.
40
Cies
Coes
VCE = 25V, VGE = 0V, f = 1MHz
Cres
Qg
Qge
IC
= IC110, VGE = 15V, VCE = 0.5 • VCES
75
S
6300
pF
435
pF
115
pF
162
nC
27
nC
Qgc
60
nC
td(on)
23
ns
38
ns
tri
Eon
td(off)
tfi
Inductive Load, TJ = 25°°C
0.23
IC = 50A, VGE = 15V
105
VCE = 200V, RG = 2Ω
ns
94
Eoff
0.52
ns
0.9
mJ
24
td(on)
tri
mJ
160
ns
37
ns
Eon
Inductive Load, TJ = 125°°C
0.35
mJ
td(off)
IC = 50A, VGE = 15V
131
ns
tfi
VCE = 200V, RG = 2Ω
113
ns
0.75
mJ
Eoff
TO-247 AD Outline
∅P
e
Dim.
Millimeter
Min. Max.
A
4.7
5.3
A1
2.2
2.54
A2
2.2
2.6
b
1.0
1.4
1.65
2.13
b1
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
0.27 °C/W
RthJC
RthCK
0.21
°C/W
PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from data gathered during objective characterizations of preliminary engineering lots; but also may yet
contain some information supplied during a pre-production design evaluation. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or moreof the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGH100N30C3
Fig. 1. Output Characteristics
@ 25ºC
Fig. 2. Extended Output Characteristics
@ 25ºC
200
350
VGE = 15V
13V
11V
180
160
250
140
9V
IC - Amperes
IC - Amperes
VGE = 15V
13V
11V
300
120
100
80
7V
60
9V
200
150
100
7V
40
50
20
5V
0
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
0
1
2
4
5
6
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics
@ 125ºC
200
1.6
VGE = 15V
13V
11V
180
160
VGE = 15V
1.5
I
C
= 200A
I
C
= 100A
I
C
= 50A
VCE(sat) - Normalized
1.4
140
IC - Amperes
3
VCE - Volts
VCE - Volts
9V
120
100
7V
80
60
1.3
1.2
1.1
1.0
0.9
40
20
0.8
5V
0
0.7
0
0.4
0.8
1.2
1.6
2
2.4
-50
-25
0
VCE - Volts
25
50
75
100
125
150
7.5
8
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
200
4.5
TJ = 25ºC
180
4.0
160
3.5
140
3.0
C
= 200A
100A
50A
IC - Amperes
VCE - Volts
I
2.5
TJ = 125ºC
25ºC
- 40ºC
120
100
80
60
2.0
40
1.5
20
1.0
0
6
7
8
9
10
11
12
VGE - Volts
© 2007 IXYS CORPORATION, All rights reserved
13
14
15
4
4.5
5
5.5
6
VGE - Volts
6.5
7
IXGH100N30C3
Fig. 8. Gate Charge
Fig. 7. Transconductance
16
120
VCE = 150V
110
14
I C = 100A
100
TJ = - 40ºC
25ºC
125ºC
80
12
VGE - Volts
g f s - Siemens
90
I G = 10mA
70
60
50
10
8
6
40
4
30
20
2
10
0
0
0
20
40
60
80
100
120
140
160
180
0
200
20
40
Fig. 9. Capacitance
80
100
120
140
160
Fig. 10. Reverse-Bias Safe Operating Area
240
10,000
Cies
200
1,000
IC - Amperes
Capacitance - PicoFarads
60
QG - NanoCoulombs
IC - Amperes
Coes
160
120
80
100
Cres
TJ = 125ºC
40
RG = 2Ω
dV / dT < 10V / ns
f = 1 MHz
0
10
0
5
10
15
20
25
30
35
40
50
100
VCE - Volts
150
200
250
300
350
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS reserves the right to change limits, test conditions, and dimensions.
0.1
1
10
IXGH100N30C3
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
Fig. 13. Inductive Swiching
Energy Loss vs. Collector Current
1.1
Eoff
Eon
TJ = 125ºC ,
1.0
----
VGE = 15V
0.5
I C = 25A
0.4
0.2
5
6
7
8
Eoff - MilliJoules
0.8
0.4
0.6
0.3
0.4
0.2
0.2
0.1
9
0.0
25
10
30
35
40
RG - Ohms
0.5
Eon
60
65
70
75
360
td(off) -
tf
t f - Nanoseconds
0.3
140
280
I
240
120
200
I
I C = 25A
= 50A
130
0.1
0.2
C
110
C
t d(off) - Nanoseconds
0.2
0.4
- MilliJoules
0.5
on
E
0.3
I C = 50A
320
VCE = 200V
0.7
0.6
---
TJ = 125ºC, VGE = 15V
150
0.4
VCE = 200V
Eoff - MilliJoules
55
160
----
RG = 2Ω , VGE = 15V
0.8
50
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
1.0
Eoff
45
IC - Amperes
Fig. 14. Inductive Swiching
Energy Loss vs. Junction Temperature
0.9
0.5
TJ = 125ºC, 25ºC
0.0
0.1
4
1.0
0.2
0.3
3
0.6
VCE = 200V
- MilliJoules
0.3
0.6
0.7
on
= 50A
----
VGE = 15V
E
C
- MilliJoules
0.7
on
0.4
I
Eon
RG = 2Ω ,
1.2
0.8
2
Eoff
0.5
VCE = 200V
0.9
0.8
1.4
E
Eoff - MilliJoules
1.6
0.6
1.2
= 25A
160
0.1
0.0
25
35
45
55
65
75
85
95
105
115
0.0
125
100
120
2
3
4
5
TJ - Degrees Centigrade
135
130
VCE = 200V
120
100
115
80
110
135
td(off) -
tf
120
t f - Nanoseconds
125
RG = 2Ω , VGE = 15V
120
10
--130
RG = 2Ω , VGE = 15V
VCE = 200V
110
125
100
120
I C = 50A, 25A
90
115
80
110
105
70
105
100
60
TJ = 25ºC
60
40
25
30
35
40
45
50
55
60
IC - Amperes
© 2007 IXYS CORPORATION, All rights reserved
65
70
75
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
100
125
t d(off) - Nanoseconds
TJ = 125ºC
----
9
130
t d(off) - Nanoseconds
t f - Nanoseconds
160
td(off)
8
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
180
tf
7
RG - Ohms
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
140
6
IXGH100N30C3
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
60
70
34
td(on) - - - -
tr
55
32
28
= 50A
40
26
35
24
30
22
I
C
= 25A
25
20
20
18
t r - Nanoseconds
t r - Nanoseconds
C
55
t d(on) - Nanoseconds
I
td(on)
---28
RG = 2Ω , VGE = 15V
VCE = 200V
50
26
45
TJ = 25ºC, 125ºC
40
24
35
30
22
25
20
15
3
4
5
6
7
8
9
20
15
16
2
t d(on) - Nanoseconds
30
VCE = 200V
45
tr
60
TJ = 125ºC, VGE = 15V
50
30
65
10
10
18
25
RG - Ohms
30
35
40
45
50
55
60
65
70
75
IC - Amperes
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
50
26
45
--25
RG = 2Ω , VGE = 15V
VCE = 200V
35
24
23
I C = 50A
30
22
25
21
I
C
= 25A
20
20
15
19
10
25
35
45
55
65
75
85
95
105
115
t d(on) - Nanoseconds
40
t r - Nanoseconds
td(on) -
tr
18
125
TJ - Degrees Centigrade
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS REF: G_100N30C3(75)8-17-07
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.