Preliminary Technical Information
IXGH120N30C3*
GenX3TM 300V IGBT
VCES
IC110
VCE(sat)
tfi(typ)
*Obsolete Part Number
High speed PT IGBTs for
50-150kHz switching
Maximum Ratings
VCES
TJ = 25°C to 150°C
300
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
300
V
VGES
Continuous
±20
V
VGEM
Transient
±30
V
IC25
TC = 25°C (limited by leads)
75
IC110
TC = 110°C (chip capability)
120
ICM
TC = 25°C, 1ms
VGE = 15V, TVJ = 125°C, RG = 2Ω
Clamped inductive load @ ≤ 300V
PC
TC = 25°C
Maximum lead temperature for soldering
1.6mm (0.062 in.) from case for 10s
Md
Mounting torque
Symbol
O
TL
TSOLD
Weight
Test Conditions
BVCES
VGE(th)
IC
IC
ICES
VCE = VCES
VGE = 0V
VCE = 0V, VGE = ±20V
VCE(sat)
IC
120
A
mJ
ICM = 240
A
540
W
-55 ... +150
°C
150
°C
-55 ... +150
°C
300
260
°C
°C
1.13/10
Nm/lb.in.
6
g
(TAB)
C = Collector,
TAB = Collector
Features
z
z
z
z
z
z
z
z
z
Characteristic Values
(TJ = 25°C, unless otherwise specified)
Min. Typ.
Max.
TJ = 125°C
= 120A, VGE = 15V
TJ = 125°C
1.75
1.70
5.0
V
V
50
1.0
μA
mA
±100
nA
2.10
V
V
High Frequency IGBT
Square RBSOA
High avalanche capability
Drive simplicity with MOS Gate
Turn-On
High current handling capability
Applications
z
300
2.5
© 2008 IXYS CORPORATION, All rights reserved
G = Gate,
E = Emitter,
z
= 250μA, VGE = 0V
= 250μA, VCE = VGE
IGES
E
A
850
bs
Tstg
C
et
SSOA
(RBSOA)
TJM
A
ol
TC = 25°C
TJ
A
600
TC = 25°C
G
e
Test Conditions
IA
300V
120A
2.1V
86ns
TO-247 AD
(IXGH)
Symbol
EAS
=
=
≤
=
z
PFC Circuits
PDP Systems
Switched-mode and resonant-mode
converters and inverters
SMPS
AC motor speed control
DC servo and robot drives
DC choppers
DS99850B(01/08)
IXGH120N30C3
Symbol
Test Conditions
(TJ = 25°C, unless otherwise specified)
Min.
83
S
8700
pF
715
pF
Cres
195
pF
Qg
230
nC
32
nC
gfs
IC = 60A, VCE = 10V,
Pulse test, t ≤ 300μs; duty cycle, d ≤ 2%.
Characteristic Values
Typ.
Max.
50
Cies
Coes
Qge
VCE = 25V, VGE = 0V, f = 1MHz
IC
= IC110, VGE = 15V, VCE = 0.5 • VCES
87
nC
td(on)
28
ns
37
ns
Eon
td(off)
tfi
Inductive Load, TJ = 25°°C
0.23
IC = 60A, VGE = 15V
109
VCE = 200V, RG = 2Ω
86
Eoff
0.73
td(off)
tfi
Inductive Load, TJ = 125°°C
IC = 60A, VGE = 15V
VCE = 200V, RG = 2Ω
RthJC
Millimeter
Min. Max.
A
4.7
5.3
2.2
2.54
A1
A2
2.2
2.6
b
1.0
1.4
b1
1.65
2.13
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
1.3
mJ
ns
38
ns
mJ
120
ns
113
ns
0.88
mJ
0.21
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
0.23 °C/W
°C/W
O
RthCK
ns
0.37
bs
Eoff
ns
ol
Eon
mJ
160
28
td(on)
tri
e
Dim.
et
tri
∅P
e
Qgc
TO-247 AD Outline
PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from data gathered during objective characterizations of preliminary engineering lots; but also may yet
contain some information supplied during a pre-production design evaluation. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or moreof the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGH120N30C3
Fig. 1. Output Characteristics
@ 25ºC
Fig. 2. Extended Output Characteristics
@ 25ºC
300
240
VGE = 15V
11V
VGE = 15V
13V
11V
220
200
250
9V
9V
160
IC - Amperes
IC - Amperes
180
140
120
7V
100
80
200
7V
150
100
60
40
50
5V
20
5V
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4
0
2
3
7
8
9
10
et
V GE = 15V
13V
11V
200
V GE = 15V
I C = 240A
1.3
9V
1.2
ol
180
VCE(sat) - Normalized
220
160
7V
140
120
100
bs
80
60
40
0
0
0.4
0.8
1.2
1.6
2
2.4
1.1
I C = 120A
1.0
0.9
I C = 60A
0.8
5V
20
0.7
2.8
-50
-25
0
O
VCE - Volts
25
50
75
100
125
150
6.5
7
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
160
TJ = 25ºC
140
120
IC - Amperes
4.0
VCE - Volts
6
1.4
240
4.5
5
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics
@ 125ºC
5.0
4
VCE - Volts
VCE - Volts
IC - Amperes
1
e
0
I C = 240A
120A
60A
3.5
3.0
2.5
TJ = 125ºC
25ºC
- 40ºC
100
80
60
40
2.0
20
1.5
0
5
6
7
8
9
10
11
VGE - Volts
© 2008 IXYS CORPORATION, All rights reserved
12
13
14
15
3
3.5
4
4.5
5
VGE - Volts
5.5
6
IXGH120N30C3
Fig. 7. Transconductance
Fig. 8. Gate Charge
140
16
120
14
VCE = 150V
12
I G = 10 mA
I C = 120A
TJ = - 40ºC
25ºC
125ºC
80
VGE - Volts
g f s - Siemens
100
60
40
10
8
6
4
20
2
0
0
20
40
60
80
100
120
140
0
160
40
80
120
e
0
160
200
240
QG - NanoCoulombs
et
I C - Amperes
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
10,000
280
C ies
1,000
IC - Amperes
ol
200
C oes
bs
Capacitance - PicoFarads
240
C res
f = 1 MHz
100
0
5
10
15
20
25
30
35
40
160
120
80
TJ = 125ºC
RG = 2Ω
dV / dT < 10V / ns
40
0
50
100
150
200
250
300
350
VCE - Volts
O
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS reserves the right to change limits, test conditions, and dimensions.
0.1
1
10
IXGH120N30C3
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
Fig. 13. Inductive Swiching
Energy Loss vs. Collector Current
1.6
2.4
VCE = 200V
0.5
2.0
0.6
Eon
RG = 2Ω ,
VGE = 15V
0.6
VCE = 200V
0.5
1.6
0.4
1.2
0.2
0.8
0.1
0.4
0.3
TJ = 125ºC
- MilliJoules
0.3
----
Eoff
on
0.8
- MilliJoules
0.4
on
E
I C = 60A
1.0
0.7
E
0.6
----
TJ = 125ºC , VGE = 15V
1.2
Eoff - MilliJoules
Eon
2.8
Eoff - MilliJoules
Eoff
1.4
0.7
0.2
I C = 30A
0.4
0.1
TJ = 25ºC
0.0
2
3
4
5
6
7
8
9
0.0
10
30
RG - Ohms
80
90
440
td(off) - - - TJ = 125ºC, VGE = 15V
VCE = 200V
tf
140
0.5
130
400
0.4
on
0.6
0.3
0.2
bs
0.4
- MilliJoules
I C = 60A
t f - Nanoseconds
ol
360
0.2
120
110
320
280
I C = 60A
100
240
90
200
I C = 30A
80
t d(off) - Nanoseconds
0.8
E
Eoff - MilliJoules
70
et
----
RG = 2Ω , VGE = 15V
VCE = 200V
160
0.1
I C = 30A
0
25
35
45
55
65
75
85
95
105
115
0.0
125
70
120
60
80
2
3
4
5
O
135
80
115
TJ = 25ºC
VCE = 200V
105
50
60
130
90
125
I C = 60A, 30A
80
120
70
115
60
110
50
105
110
40
40
t f - Nanoseconds
120
t d(off) - Nanoseconds
TJ = 125ºC
135
RG = 2Ω , VGE = 15V
100
125
30
10
70
I C - Amperes
© 2008 IXYS CORPORATION, All rights reserved
80
90
40
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
100
125
t d(off) - Nanoseconds
VCE = 200V
td(off) - - - -
tf
130
120
60
9
140
110
RG = 2Ω , VGE = 15V
100
8
120
td(off) - - - -
tf
140
7
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
160
6
RG - Ohms
TJ - Degrees Centigrade
t f - Nanoseconds
60
150
0.6
Eon
50
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
1.2
Eoff
40
I C - Amperes
Fig. 14. Inductive Swiching
Energy Loss vs. Junction Temperature
1
0.0
e
0.2
IXGH120N30C3
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
60
40
td(on) - - - -
55
70
38
40
32
I C = 60A
35
30
I C = 30A
30
28
25
26
20
24
15
VCE = 200V
t r - Nanoseconds
34
22
2
3
4
5
6
7
8
9
TJ = 25ºC, 125ºC
30
27
20
25
40
50
60
70
23
80
90
et
28
ol
40
I C = 60A
27
td(on) - - - -
RG = 2Ω , VGE = 15V
26
VCE = 200V
bs
25
I C = 30A
20
29
t d(on) - Nanoseconds
t r - Nanoseconds
29
25
40
30
45
30
31
I C - Amperes
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
tr
50
10
10
RG - Ohms
35
33
RG = 2Ω , VGE = 15V
t d(on) - Nanoseconds
45
t d(on) - Nanoseconds
t r - Nanoseconds
60
36
VCE = 200V
td(on) - - - -
tr
TJ = 125ºC, VGE = 15V
50
35
e
tr
24
15
25
35
45
55
65
75
85
95
105
115
23
125
O
TJ - Degrees Centigrade
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS REF: G_120N30C3(76)7-13-07
e
et
ol
bs
O
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.