IXGH30N120B3D1
IXGT30N120B3D1
GenX3TM 1200V IGBT
High speed Low Vsat PT
IGBTs 3-20 kHz switching
Symbol
Test Conditions
Maximum Ratings
VCES
TJ = 25°C to 150°C
1200
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
1200
V
VCES
IC110
VCE(sat)
tfi(typ)
=
=
≤£
=
1200V
30A
3.5V
204ns
TO-247 AD (IXGH)
VGES
Continuous
±20
V
VGEM
Transient
±30
V
IC110
TC = 110°C
30
A
IF110
TC = 110°C
28
A
ICM
TC = 25°C, 1ms
150
A
SSOA
VGE = 15V, TVJ = 125°C, RG = 5Ω
ICM = 60
A
(RBSOA)
Clamped inductive load
PC
TC = 25°C
G
C
C (TAB)
E
TO-268 (IXGT)
@ 0.8 • VCE
300
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
TJ
Md
Mounting torque (TO-247)
1.13 / 10
Nm/lb.in.
TL
Maximum lead temperature for soldering
300
°C
TSOLD
1.6mm (0.062 in.) from case for 10s
260
°C
Weight
TO-247
TO-268
6
4
g
g
G
G = Gate
E = Emitter
E
C (TAB)
C
= Collector
TAB = Collector
Features
z
z
z
z
Optimized for low conduction and
switching losses
Square RBSOA
Anti-parallel ultra fast diode
International standard packages
Advantages
Symbol
Test Conditions
VGE(th)
IC = 250μA, VCE = VGE
ICES
VCE = VCES
VGE = 0V
Characteristic Values
(TJ = 25°C, unless otherwise specified)
Min.
Typ.
Max.
3.0
TJ = 125°C
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC = 30A, VGE = 15V, Note 1
TJ = 125°C
© 2008 IXYS CORPORATION, All rights reserved
2.96
2.95
5.0
V
300
1.5
μA
mA
±100
nA
3.5
V
V
z
z
High power density
Low gate drive requirement
Applications
z
z
z
z
z
z
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Welding Machines
DS99566A(05/08)
IXGH30N120B3D1
IXGT30N120B3D1
Symbol
Test Conditions
(TJ = 25°C, unless otherwise specified)
gfs
Min.
IC = 30A, VCE = 10V, Note 1
Characteristic Values
Typ.
Max.
11
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg
Qge
Qgc
IC = 30A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
Inductive load, TJ = 25°°C
IC = 30A, VGE = 15V, Notes 2
19
S
1750
120
46
pF
pF
pF
87
15
39
nC
nC
nC
16
ns
37
3.47
ns
mJ
127
200
ns
204
380
ns
Eoff
2.16
4.0
mJ
td(on)
tri
Eon
td(off)
tfi
Eoff
18
38
6.70
216
255
5.10
ns
ns
mJ
ns
ns
mJ
0.21
0.42 °C/W
°C/W
td(off)
tfi
VCE = 0.8 • VCES, RG = 5Ω
Inductive load, TJ = 125°°C
IC = 30A,VGE = 15V, Notes 2
VCE = 0.8 • VCES,RG = 5Ω
RthJC
RthCS
Reverse Diode (FRED)
Symbol
TO-247 AD Outline
∅P
e
Dim.
Millimeter
Min. Max.
A
4.7
5.3
2.2
2.54
A1
A2
2.2
2.6
b
1.0
1.4
b1
1.65
2.13
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
TO-268 Outline
Characteristic Values
(TJ = 25°C, unless otherwise specified)
Min.
Typ. Max.
Test Conditions
VF
IF = 30A,VGE = 0V, Note 1
IRM
IF = 30A,VGE = 0V, -diF/dt = 100A/μs, TJ = 100°C
trr
VR = 300V
TJ = 150°C
TJ = 100°C
2.8
V
V
4
A
1.6
100
RthJC
ns
0.9 °C/W
Note 1: Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
2. Switching times may increase for VCE (Clamp) > 0.8 VCES,
higher TJ or increased RG.
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or moreof the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGH30N120B3D1
IXGT30N120B3D1
Fig. 1. Output Characteristics
@ 25ºC
Fig. 2. Extended Output Characteristics
@ 25ºC
200
60
VGE = 15V
13V
11V
55
50
VGE = 15V
180
160
13V
140
40
IC - Amperes
IC - Amperes
45
9V
35
30
25
20
7V
120
11V
100
80
9V
60
15
40
10
7V
20
5
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
0
3
6
9
15
60
21
24
27
30
1.5
VGE = 15V
13V
11V
55
50
VGE = 15V
1.4
1.3
VCE(sat) - Normalized
45
40
35
9V
30
25
20
7V
15
1.1
C
= 60A
I
C
= 30A
I
C
= 15A
1.0
0.9
0.8
0.7
5
I
1.2
10
5V
0.6
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
-50
5.0
-25
0
VCE - Volts
25
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
65
7.5
7.0
60
TJ = 25ºC
55
6.5
50
6.0
45
IC - Amperes
VCE - Volts
18
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics
@ 125ºC
IC - Amperes
12
VCE - Volts
VCE - Volts
5.5
I
5.0
C
= 60A
4.5
4.0
30A
40
35
30
TJ = 125ºC
25ºC
- 40ºC
25
20
3.5
15
3.0
10
15A
2.5
5
2.0
0
6
7
8
9
10
11
VGE - Volts
© 2008 IXYS CORPORATION, All rights reserved
12
13
14
15
4.5
5.0
5.5
6.0
6.5
7.0
7.5
VGE - Volts
8.0
8.5
9.0
9.5
IXGH30N120B3D1
IXGT30N120B3D1
Fig. 8. Gate Charge
Fig. 7. Transconductance
26
16
TJ = - 40ºC
24
20
25ºC
12
125ºC
10
I C = 30A
I G = 10mA
18
16
VGE - Volts
g f s - Siemens
VCE = 600V
14
22
14
12
10
8
6
8
4
6
4
2
2
0
0
0
10
20
30
40
50
60
0
70
10
20
30
40
50
60
70
80
90
QG - NanoCoulombs
IC - Amperes
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
10,000
70
f = 1 MHz
50
Cies
1,000
IC - Amperes
Capacitance - PicoFarads
60
Coes
100
40
30
20
10
Cres
10
0
5
10
15
20
25
30
35
40
TJ = 125ºC
RG = 5Ω
dV / dt < 10V / ns
0
200
400
600
VCE - Volts
800
1000
1200
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.0001
0.001
0.01
0.1
1
10
Pulse Width - Seconds
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS REF: G_30N120B3(4A)5-06-08-A
IXGH30N120B3D1
IXGT30N120B3D1
Fig. 13. Inductive Switching
Energy Loss vs. Collector Current
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
18
16
20
Eon -
Eoff
16
---
16
18
14
Eoff
16
12
VCE = 960V
I C = 30A
4
2
5
7
9
11
13
15
17
19
21
23
Eoff - MilliJoules
8
6
6
8
4
4
6
2
4
0
10
6
TJ = 25ºC
20
25
30
12
I C = 60A
on
10
6
8
4
6
I C = 30A
2
4
0
2
125
45
55
65
75
85
95
105
115
- MilliJoules
8
35
tf
420
TJ = 125ºC, VGE = 15V
550
400
VCE = 960V
500
380
450
360
I
350
320
300
300
I
200
260
150
100
7
9
11
200
TJ = 25ºC
150
150
100
100
50
35
40
45
IC - Amperes
© 2008 IXYS CORPORATION, All rights reserved
50
55
60
t f - Nanoseconds
t f - Nanoseconds
250
30
13
15
17
19
21
23
25
280
400
tf
375
RG = 5Ω , VGE = 15V
265
250
350
VCE = 960V
235
td(off) - - - -
325
220
300
I
C
205
= 60A, 30A
275
190
250
175
225
160
200
145
175
130
150
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
115
125
t d(off) - Nanoseconds
250
t d(off) - Nanoseconds
300
TJ = 125ºC
25
250
= 30A
425
350
VCE = 960V
20
C
280
5
RG = 5Ω , VGE = 15V
15
400
= 60A
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
td(off) - - - -
200
C
340
240
400
300
600
td(off) - - - -
RG - Ohms
450
350
60
440
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
tf
55
650
TJ - Degrees Centigrade
400
50
t d(off) - Nanoseconds
VCE = 960V
t f - Nanoseconds
14
E
Eoff - MilliJoules
----
RG = 5Ω , VGE = 15V
25
45
460
16
10
40
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
14
Eon
35
IC - Amperes
Fig. 14. Inductive Switching
Energy Loss vs. Junction Temperature
Eoff
2
0
15
25
RG - Ohms
12
10
TJ = 125ºC
8
12
8
10
- MilliJoules
= 60A
12
on
C
- MilliJoules
I
10
14
E
14
on
12
E
Eoff - MilliJoules
VCE = 960V
----
RG = 5Ω , VGE = 15V
TJ = 125ºC , VGE = 15V
14
Eon
IXGH30N120B3D1
IXGT30N120B3D1
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
180
td(on) - - - -
46
C
42
= 60A
38
100
34
80
I
C
20
0
5
7
9
11
13
15
17
19
21
23
22
20
18
40
16
30
14
20
12
18
10
10
14
0
22
= 30A
24
TJ = 125ºC, 25ºC
70
50
26
40
26
VCE = 960V
80
60
30
60
t d(on) - Nanoseconds
120
28
25
8
15
RG - Ohms
t d(on) - Nanoseconds
I
VCE = 960V
td(on) - - - -
RG = 5Ω , VGE = 15V
90
TJ = 125ºC, VGE = 15V
140
30
tr
100
t r - Nanoseconds
tr
160
t r - Nanoseconds
110
50
20
25
30
35
40
45
50
55
60
IC - Amperes
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
26
120
tr
td(on) - - - -
110
RG = 5Ω , VGE = 15V
100
VCE = 960V
25
24
23
I C = 60A
90
22
80
21
70
20
60
19
50
18
40
17
30
I
C
t d(on) - Nanoseconds
t r - Nanoseconds
130
16
= 30A
20
15
10
25
35
45
55
65
75
85
95
105
115
14
125
TJ - Degrees Centigrade
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS REF: G_30N120B3(4A)5-06-08-A
IXGH30N120B3D1
IXGT30N120B3D1
1000
60
A
50
IF
30
TVJ= 100°C
800
Qr
TVJ=150°C
30
25
IF= 60A
IF= 30A
IF= 15A
40
600
IF= 60A
IF= 30A
IF= 15A
IRM
20
15
TVJ=100°C
400
20
10
TVJ=25°C
200
10
0
TVJ= 100°C
VR = 300V
A
nC V = 300V
R
0
1
0
100
3 V
2
5
A/μs 1000
-diF /dt
VF
Fig. 21. Forward current IF versus VF
Fig. 22. Reverse recovery charge Qr
versus -diF/dt
2.0
90
Kf
IF= 60A
IF= 30A
IF= 15A
IRM
400
600 A/μs
800
-diF /dt
1000
1.00
TVJ= 100°C
IF = 30A
μs
VFR
tfr
80
1.0
200
Fig. 23. Peak reverse current IRM
versus -diF/dt
V
V FR
15
trr
1.5
0
20
TVJ= 100°C
VR = 300V
ns
0
tfr
0.75
10
0.50
5
0.25
70
0.5
Qr
0.0
0
40
80
120 °C 160
60
0
200
400
600
T VJ
800
A/μs
1000
-diF /dt
Fig. 24. Dynamic parameters Qr, IRM
versus TVJ
Fig. 25. Recovery time trr versus -diF/dt
1
K/W
1
ZthJC - K/W
0.1
Z thJC
0.1
0.01
0.01
0.001
0.00001
0.001
0.0001
DSEP 29-06
0.0001
0.001
0.01
0.001
0.01
Time - Seconds
Fig. 27. Transient thermal resistance junction to case
© 2008 IXYS CORPORATION, All rights reserved
0.1
0.1
t
s
1
1
0
0
200
400
0.00
600 A/μs
800 1000
diF /dt
Fig. 26. Peak forward voltage VFR and
tfr versus diF/dt
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.