Advance Technical Information
IXGH36N60B3
GenX3TM 600V IGBT
VCES
= 600V
IC110
= 36A
VCE(sat) ≤ 1.8V
Medium-Speed Low-Vsat PT IGBT
for 5 - 40kHz Switching
TO-247
Symbol
Test Conditions
Maximum Ratings
VCES
TJ = 25°C to 150°C
600
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
600
V
VGES
Continuous
± 20
V
VGEM
Transient
± 30
V
IC25
TC = 25°C
92
A
IC110
TC = 110°C
36
A
ICM
TC = 25°C, 1ms
200
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 5Ω
Clamped Inductive Load
ICM = 80
VCE ≤ VCES
A
PC
TC = 25°C
250
W
-55 ... +150
°C
z
TJM
150
°C
z
Tstg
-55 ... +150
°C
300
260
°C
°C
TJ
TL
TSOLD
Md
1.6mm (0.062 in.) from Case for 10s
Plastic Body for 10s
Mounting Torque
1.13/10
Nm/lb.in.
6
g
Weight
G
z
IC = 250μA, VGE= 0V
600
VGE(th)
IC = 250μA, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
5.0
TJ = 125°C
z
z
IGES
VCE = 0V, VGE = ± 20V
VCE(sat)
IC
= 30A, VGE = 15V, Note 1
© 2010 IXYS CORPORATION, All Rights Reserved
1.5
z
z
V
z
V
z
25
μA
μA
±100
nA
1.8
V
Optimized for Low Conduction and
Switching Losses
Square RBSOA
International Standard Package
High Power Density
Low Gate Drive Requirement
Applications
z
250
C
= Collector
Tab = Collector
Advantages
z
BVCES
Tab
Features
z
Characteristic Values
Min.
Typ.
Max.
E
G = Gate
E = Emitter
z
Symbol
Test Conditions
(TJ = 25°C Unless Otherwise Specified)
C
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100236(02/10)
IXGH36N60B3
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
28
IC
= 30A, VCE = 10V, Note 1
Cies
Coes
VCE = 25V, VGE = 0V, f = 1MHz
42
S
2280
pF
120
pF
32
pF
Cres
Qg
Qge
IC
80
nC
12
nC
36
nC
19
ns
24
ns
0.54
mJ
= 30A, VGE = 15V, VCE = 0.5 • VCES
Qgc
td(on)
tri
Eon
td(off)
Inductive Load, TJ = 25°°C
IC = 30A, VGE = 15V
VCE = 400V, RG = 5Ω
TO-247 Outline (IXGH)
125
200
ns
100
160
ns
Eoff
0.8
1.5
mJ
td(on)
19
tfi
tri
26
ns
IC = 30A, VGE = 15V
0.9
mJ
180
ns
VCE = 400V, RG = 5Ω
170
ns
1.5
mJ
Inductive Load, TJ = 125°°C
Eon
td(off)
tfi
Eoff
0.50 °C/W
RthJC
RthCS
Note
ns
0.21
∅P
Terminals: 1 - Gate
3 - Emitter
Dim.
Millimeter
Min. Max.
A
4.7
5.3
2.2
2.54
A1
A2
2.2
2.6
b
1.0
1.4
1.65
2.13
b1
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
2 - Collector
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
°C/W
1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a
"considered reflection" of the anticipated result. IXYS reserves the right to change limits, test
conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or moreof the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGH36N60B3
Fig. 2. Extended Output Characteristics @ T J = 25ºC
Fig. 1. Output Characteristics @ T J = 25ºC
300
60
VGE = 15V
13V
11V
9V
VGE = 15V
13V
11V
250
40
IC - Amperes
IC - Amperes
50
7V
30
20
200
9V
150
7V
100
10
50
5V
5V
0
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
0
2
4
6
60
12
14
1.4
VGE = 15V
13V
11V
9V
VGE = 15V
1.3
VCE(sat) - Normalized
50
IC - Amperes
10
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ T J = 125ºC
40
7V
30
20
5V
10
I
C
= 60A
I
C
= 30A
I
C
= 15A
1.2
1.1
1.0
0.9
0.8
0
0.7
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
-50
2.4
-25
0
25
VCE - Volts
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
240
4.0
TJ = - 40ºC
25ºC
125ºC
TJ = 25ºC
3.6
200
I
2.8
C
IC - Amperes
3.2
VCE - Volts
8
VCE - Volts
VCE - Volts
= 60A
30A
15A
2.4
160
120
80
2.0
40
1.6
0
1.2
4
5
6
7
8
9
10
11
VGE - Volts
© 2010 IXYS CORPORATION, All Rights Reserved
12
13
14
15
3.5
4.0
4.5
5.0
5.5
6.0
6.5
VGE - Volts
7.0
7.5
8.0
8.5
9.0
IXGH36N60B3
Fig. 7. Transconductance
Fig. 8. Gate Charge
90
16
TJ = - 40ºC
80
70
60
125ºC
50
I C = 30A
I G = 10mA
12
25ºC
VGE - Volts
g f s - Siemens
VCE = 300V
14
40
10
8
6
30
4
20
2
10
0
0
0
20
40
60
80
100
120
140
160
180
200
220
0
240
10
20
Fig. 9. Capacitance
40
50
60
70
80
Fig. 10. Reverse-Bias Safe Operating Area
10,000
90
f = 1 MHz
80
70
Cies
1,000
IC - Amperes
Capacitance - PicoFarads
30
QG - NanoCoulombs
IC - Amperes
Coes
100
60
50
40
30
Cres
10
0
5
10
15
20
25
30
35
20
TJ = 125ºC
10
RG = 5Ω
dv / dt < 10V / ns
0
100
40
150
200
250
VCE - Volts
300
350
400
450
500
550
600
650
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
10
IXGH36N60B3
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
4.5
3.6
4.0
4.0
3.2
3.6
Eoff
3.2
RG = 5Ω , VGE = 15V
C
2.8
= 60A
2.4
---
2.0
VCE = 400V
2.0
- MilliJoules
TJ = 125ºC , VGE = 15V
2.5
1.6
I C = 30A
2.0
Eon
----
1.6
TJ = 125ºC
VCE = 400V
2.8
1.4
2.4
1.2
2.0
1.0
1.6
0.8
TJ = 25ºC
1.5
1.2
1.2
0.6
1.0
0.8
0.8
0.4
0.5
0.4
0.4
0.2
0.0
120
0.0
I C = 15A
0.0
0
10
20
30
40
50
60
70
80
90
100
110
0.0
15
20
25
30
45
50
55
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
2.0
320
3.6
1.8
300
tf
280
TJ = 125ºC, VGE = 15V
1.6
= 60A
1.4
2.4
1.2
Eoff
Eon
----
RG = 5Ω , VGE = 15V
1.0
I C = 30A
VCE = 400V
0.8
Eon - MilliJoules
2.8
t f - Nanoseconds
C
60
1100
td(off) - - - -
1000
900
VCE = 400V
260
800
240
700
220
I
C
= 15A, 30A, 60V
600
200
500
1.2
0.6
180
400
0.8
0.4
160
300
0.4
0.2
140
200
0.0
125
120
I C = 15A
0.0
25
35
45
55
65
75
85
95
105
115
0
10
20
30
40
TJ - Degrees Centigrade
240
td(off) - - - -
tf
225
160
140
TJ = 25ºC
t f - Nanoseconds
180
150
120
90
100
25
30
35
40
110
td(off) - - - -
100
120
45
50
IC - Amperes
© 2010 IXYS CORPORATION, All Rights Reserved
55
60
190
RG = 5Ω , VGE = 15V
180
VCE = 400V
195
170
180
160
165
I
C
150
= 30A, 60A
150
140
135
130
I C = 15A
120
110
20
100
120
105
110
90
25
35
45
55
65
75
85
TJ - Degrees Centigrade
95
105
115
100
125
t d(off) - Nanoseconds
TJ = 125ºC
t d(off) - Nanoseconds
200
15
90
200
210
VCE = 400V
190
130
80
240
220
RG = 5Ω , VGE = 15V
170
70
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
230
210
60
RG - Ohms
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
tf
50
t d(off) - Nanoseconds
I
1.6
40
IC - Amperes
4.0
2.0
35
RG - Ohms
3.2
t f - Nanoseconds
1.8
Eon - MilliJoules
Eon -
Eoff
on
3.0
Eoff - MilliJoules
I
E
Eoff - MilliJoules
3.5
Eoff - MilliJoules
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
IXGH36N60B3
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
150
120
100
55
tr
50
RG = 5Ω , VGE = 15V
90
105
80
90
70
I
75
C
= 15A, 30A, 60A
60
25
24
td(on) - - - -
23
VCE = 400V
45
22
TJ = 125ºC
40
21
35
20
30
19
60
50
45
40
30
30
20
17
15
20
15
16
10
120
10
0
0
10
20
30
40
50
60
70
80
90
100
110
25
15
15
RG - Ohms
18
TJ = 25ºC
t d(on) - Nanoseconds
VCE = 400V
t d(on) - Nanoseconds
t r - Nanoseconds
td(on) - - - -
TJ = 125ºC, VGE = 15V
60
t r - Nanoseconds
tr
135
110
20
25
30
35
40
45
50
55
60
IC - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
65
27
tr
I C = 60A
45
td(on) - - - -
25
RG = 5Ω , VGE = 15V
23
VCE = 400V
35
21
I C = 30A
25
I
15
C
19
= 15A
17
5
25
35
45
55
t d(on) - Nanoseconds
t r - Nanoseconds
55
65
75
85
95
105
115
15
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_36N60B3(55) 1-29-10-D
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.