High Voltage IGBTs
w/Diode
IXGH40N120B2D1
IXGT40N120B2D1
VCES =
IC110 =
VCE(sat) ≤
tfi(typ) =
1200V
40A
3.5V
140ns
TO-247 (IXGH)
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TC = 25°C to 150°C
TJ = 25°C to 150°C, RGE = 1MΩ
1200
1200
V
V
VGES
VGEM
Continuous
Transient
± 20
± 30
V
V
IC25
IC110
IF110
ICM
TC = 25°C (Limited by Lead)
TC = 110°C
TC = 110°C
TC = 25°C, 1ms
75
40
25
200
A
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 2Ω
Clamped Inductive Load
ICM = 80
@ 0.8 ≤ VCES
A
V
PC
TC = 25°C
380
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
300
260
°C
°C
1.13/10
Nm/lb.in.
6
4
g
g
TJ
TL
TSOLD
1.6mm (0.062 in.) from Case for 10s
Plastic Body for 10 seconds
Md
Mounting Torque (TO-247)
Weight
TO-247
TO-268
G
Characteristic Values
Min.
Typ.
Max.
VGE(th)
IC = 250μA, VCE = VGE
3.0
G
ICES
VCE = VCES, VGE = 0V
TJ = 125°C
IGES
VCE = 0V, VGE = ± 20V
VCE(sat)
IC = 40A, VGE = 15V, Note 1
© 2009 IXYS CORPORATION, All RrightsRreserved
2.9
V
100
μA
3
mA
±100
nA
3.5
V
E
C (TAB)
G = Gate
E = Emitter
C = Collector
TAB = Collector
Features
z
z
z
5.0
C (TAB)
E
TO-268 (IXGT)
z
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
C
International Standard Packages
IGBT and Anti-Parallel FRED for
Resonant Power Supplies
- Induction Heating
- Rice Cookers
Square RBSOA
Fast Recovery Expitaxial Diode
(FRED)
- Soft Recovery with Low IRM
Advantages
z
z
High Power Density
Low Gate Drive Requirement
DS99555B(02/09)
IXGH40N120B2D1
IXGT40N120B2D1
Symbol
Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min. Typ.
Max.
gfS
23
IC = 40A, VCE = 10V, Note 1
TO-247 (IXGH) Outline
37
S
3360
pF
190
pF
Cres
63
pF
Qg
138
nC
20
nC
Qgc
48
nC
td(on)
21
ns
55
4.5
ns
mJ
290
ns
Cies
Coes
Qge
VCE = 25V, VGE = 0V, f = 1MHz
IC = 40A, VGE = 15V, VCE = 0.5 • VCES
Inductive load, TJ = 25°C
tri
Eon
IC = 40A, VGE = 15V
td(off)
VCE = 960V, RG = 2Ω
tfi
Note 2
Eoff
td(on)
140
270
ns
3.0
6.0
mJ
21
ns
tri
Inductive load, TJ = 125°C
58
ns
Eon
IC = 40A, VGE = 15V
6.5
mJ
td(off)
VCE = 960V, RG = 2Ω
350
ns
tfi
Note 2
420
ns
8.3
mJ
Eoff
0.33
RthJC
RthCS
0.21
1
2
∅P
3
e
Terminals: 1 - Gate
3 - Source
Dim.
Millimeter
Min. Max.
A
4.7
5.3
2.2
2.54
A1
2.2
2.6
A2
b
1.0
1.4
1.65
2.13
b1
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
2 - Drain
Tab - Drain
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
°C/W
°C/W
TO-268 (IXGT) Outline
Reverse Diode (FRED)
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
VF
IF = 30A, VGE = 0V
IRM
IF = 30A, -di/dt = 100A/μs,
VR = 300V,VGE = 0V
trr
Characteristic Values
Min.
Typ.
Max.
TJ = 150°C
TJ = 100°C
TJ = 100°C
2.8
V
V
4
A
1.6
100
RthJC
ns
0.9 °C/W
Note 1: Pulse Test, t ≤ 300μs, Duty Cycle, d ≤ 2%.
2. Switching Times may Increase for VCE (Clamp) > 0.8 • VCES,
Higher TJ or Increased RG.
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGH40N120B2D1
IXGT40N120B2D1
Fig. 1. Output Characteristics
@ 25ºC
Fig. 2. Extended Output Characteristics
@ 25ºC
250
80
VGE = 15V
13V
11V
70
200
60
175
IC - Amperes
IC - Amperes
VGE = 15V
13V
225
9V
50
40
7V
30
11V
150
125
9V
100
75
20
50
10
7V
25
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0
4.5
2
4
6
Fig. 3. Output Characteristics
@ 125ºC
12
14
16
18
20
1.6
VGE = 15V
13V
11V
1.5
VGE = 15V
1.4
VCE(sat) - Normalized
60
IC - Amperes
10
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
80
70
8
VCE - Volts
VCE - Volts
9V
50
40
7V
30
20
I
1.3
C
= 80A
1.2
1.1
I
1.0
C
= 40A
0.9
0.8
10
5V
0.7
0
I
C
= 20A
0.6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
-50
4.5
-25
0
25
50
75
100
125
150
TJ - Degrees Centigrade
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
120
7
TJ = 25ºC
100
6
C
5
= 80A
40A
20A
IC - Amperes
VCE - Volts
I
4
80
60
40
3
TJ = 125ºC
25ºC
- 40ºC
20
2
0
5
6
7
8
9
10
11
12
13
VGE - Volts
© 2009 IXYS CORPORATION, All RrightsRreserved
14
15
4.0
4.5
5.0
5.5
6.0
6.5
VGE - Volts
7.0
7.5
8.0
8.5
9.0
IXGH40N120B2D1
IXGT40N120B2D1
Fig. 7. Transconductance
55
Fig. 8. Gate Charge
16
TJ = - 40ºC
50
VCE = 600V
14
I C = 40A
45
35
125ºC
30
I G = 10 mA
12
25ºC
VGE - Volts
g f s - Siemens
40
25
20
15
10
8
6
4
10
2
5
0
0
0
10
20
30
40
50
60
70
80
90
100 110
120
0
20
40
IC - Amperes
80
100
120
140
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
10,000
90
f = 1 MHz
80
70
Cies
1,000
IC - Amperes
Capacitance - PicoFarads
60
QG - NanoCoulombs
Coes
60
50
40
30
100
20
Cres
10
10
0
5
10
15
20
25
30
35
40
0
200
TJ = 125ºC
RG = 2Ω
dV / dt < 10V / ns
300
400
500
600
700
800
900
1000 1100 1200
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.0001
0.001
0.01
0.1
1
10
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS REF: G_40N120B2(6ZC) 3-30-06
IXGH40N120B2D1
IXGT40N120B2D1
Fig. 13. Inductive Switching Energy Loss vs.
Junction Temperature
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
18
16
I
= 80A
C
Eoff
16
14
Eon -
Eoff
12
Eoff / Eon - MilliJoules
Eoff / Eon - MilliJoules
14
---
TJ = 125ºC , VGE = 15V
VCE = 960V
10
8
I
= 40A
C
6
Eon
= 80A
C
VCE = 960V
12
10
8
I
C
= 40A
6
2
I
2
I
= 20A
C
C
= 20A
0
2
3
4
5
6
7
8
9
10
25
35
45
RG - Ohms
500
Eoff
Eon
----
RG = 2Ω , VGE = 15V
75
85
95
105
115
TJ = 125ºC
t f - Nanoseconds
VCE = 960V
10
8
6
TJ = 25ºC
4
tf
620
td(off) - - - -
480
TJ = 125ºC, VGE = 15V
460
VCE = 960V
I
C
580
= 80A, 40A, 20V
540
440
500
420
460
400
420
380
380
360
340
I C = 80A, 40A, 20V
340
2
300
320
0
20
25
30
35
40
45
50
55
60
65
70
75
260
2
80
3
4
5
Fig. 16. Inductive Turn-off Switching Times
vs. Junction Temperature
500
td(off) - - - 420
VCE = 960V
360
330
250
300
270
I C = 20A, 80A
150
240
100
210
125
35
45
55
65
75
85
95
105
115
TJ - Degrees Centigrade
© 2009 IXYS CORPORATION, All RrightsRreserved
460
440
440
tf
td(off) - - - -
420
RG = 2Ω , VGE = 15V
TJ = 125ºC
360
400
VCE = 960V
320
380
280
360
240
340
200
320
160
300
120
280
TJ = 25ºC
80
260
20
25
30
35
40
45
50
55
IC - Amperes
60
65
70
75
80
- Nanoseconds
300
25
10
d(off)
= 20A, 40A, 80A
200
9
t
C
390
t d(off) - Nanoseconds
I
350
8
480
400
t f - Nanoseconds
RG = 2Ω , VGE = 15V
400
7
Fig. 17. Inductive Turn-off Switching Times
vs. Collector Current
450
450
6
RG - Ohms
IC - Amperes
tf
125
t d(off) - Nanoseconds
12
65
Fig. 15. Inductive Turn-off Switching Times
vs. Gate Resistance
16
14
55
TJ - Degrees Centigrade
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
t f - Nanoseconds
I
4
4
Eoff / Eon - MilliJoules
----
RG = 2Ω , VGE = 15V
IXGH40N120B2D1
IXGT40N120B2D1
Fig. 18. Inductive Turn-on Switching Times
vs. Gate Resistance
Fig. 19. Inductive Turn-on Switching Times
vs. Junction Temperature
30
120
120
29
110
28
100
I
110
t r - Nanoseconds
td(on) - - - -
27
TJ = 125ºC, VGE = 15V
90
26
VCE = 960V
80
I
25
= 40A
C
70
24
60
23
50
22
40
21
I
30
C
= 20A
20
2
3
4
5
6
7
8
9
24
I C = 80A
90
tr
80
RG = 2Ω , VGE = 15V
td(on) - - - 22
VCE = 960V
70
I C = 40A
60
21
50
40
20
30
19
20
20
I C = 20A
25
10
23
t d(on) - Nanoseconds
100
= 80A
t d(on) - Nanoseconds
tr
C
t r - Nanoseconds
130
RG - Ohms
35
45
55
65
75
85
95
105
115
19
125
TJ - Degrees Centigrade
Fig. 20. Inductive Turn-on Switching Times
vs. Collector Current
120
24
tr
110
RG = 2Ω , VGE = 15V
25ºC < TJ < 125ºC
VCE = 960V
100
90
23
80
22
70
60
21
50
40
t d(on) - Nanoseconds
t r - Nanoseconds
td(on) - - - -
20
30
20
19
20
25
30
35
40
45
50
55
60
65
70
75
80
IC - Amperes
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS REF: G_40N120B2(6ZC) 3-30-06
IXGH40N120B2D1
IXGT40N120B2D1
1000
60
A
50
IF
30
TVJ= 100°C
800
Qr
TVJ=150°C
30
25
IF= 60A
IF= 30A
IF= 15A
40
600
IF= 60A
IF= 30A
IF= 15A
IRM
20
15
TVJ=100°C
400
20
10
TVJ=25°C
200
10
0
TVJ= 100°C
VR = 300V
A
nC V = 300V
R
0
1
0
100
3 V
2
5
A/μs 1000
-diF /dt
VF
Fig. 21. Forward current IF versus VF
Fig. 22. Reverse recovery charge Qr
versus -diF/dt
2.0
90
Kf
200
IF= 60A
IF= 30A
IF= 15A
IRM
1000
1.00
TVJ= 100°C
IF = 30A
μs
tfr
0.75
VFR
tfr
80
1.0
600 A/μs
800
-diF /dt
400
Fig. 23. Peak reverse current IRM
versus -diF/dt
V
V FR
15
trr
1.5
0
20
TVJ= 100°C
VR = 300V
ns
0
10
0.50
5
0.25
70
0.5
Qr
0.0
0
40
80
120 °C 160
60
0
T VJ
200
400
600
800
A/μs
1000
0
0
400
-diF /dt
Fig. 24. Dynamic parameters Qr, IRM
versus TVJ
Fig. 25. Recovery time trr versus -diF/dt
1
K/W
0.00
600 A/μs
800 1000
diF /dt
Fig. 26. Peak forward voltage VFR and
tfr versus diF/dt
Constants for ZthJC calculation
i
0.1
Z thJC
1
2
3
0.01
0.001
0.00001
200
DSEP 29-06
0.0001
0.001
0.01
Fig. 27. Transient thermal resistance junction to case
© 2009 IXYS CORPORATION, All RrightsRreserved
0.1
t
s
1
Rth ( °C/W)
0.465
0.179
0.256
ti (s)
0.0052
0.0003
0.0397
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.